18.05 Exam 1 Solutions

Problem 0. (5 pts)

Turn in notecard.

Problem 1. (20 pts: 4,4,4,8)

(a) (Produced by counting reboots)

		R				
		1	2	3	8	
С	Mac = 0	1/6	2/6	0	1/6	4/6
	Mac = 0 $PC = 1$					
		1/6	3/6	1/6	1/6	1

(b) From the table: $E(C) = 0 \cdot \frac{4}{6} + 1 \cdot \frac{2}{6} = \left| \frac{1}{3} \right|$ $E(R) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{3}{6} + 3 \cdot \frac{1}{6} + 8 \cdot \frac{1}{6} = \frac{18}{6} = 3$.

(c) We use the formula
$$Cov(C, R) = E(CR) - E(C)E(R)$$
.

$$E(CR) = 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} = \frac{5}{6} \implies Cov(C, R) = \frac{5}{6} - 1 = \boxed{-\frac{1}{6}}.$$

Since covariance is not zero, they are not independent.

The negative covariance suggests that as C increases R tends to decrease. That is, PC users have to reboot less often than Mac users.

(d) (i) Independendent \Rightarrow joint pmf = product of marginal pmf's. (ii) P(W > M) = sum of red prob. in table $= \frac{1}{8} + \frac{1}{8} + \frac{1}{4} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$ (iii) P(W > M) = sum of red prob. in table $= \frac{1}{8} + \frac{1}{8} + \frac{1}{4} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$ (iv) $C_{-}(W, M) = 0$ is a there are independent (iv) $C_{-}(W, M) = 0$ is a there are independent (iv) $C_{-}(W, M) = 0$ is a there are independent

(iii) Cor(W, M) = 0 since they are independent.

Problem 2. (8 pts)

We are given that $T = \frac{5}{9}X - \frac{160}{9}$, and $S = \frac{5}{9}Y - \frac{160}{9}$.

The algebraic properties of covariance say that Cov(aX + b, cY + d) = acCov(X, Y). Thus,

$$\operatorname{Cov}(T,S) = \frac{5}{9} \cdot \frac{5}{9} \operatorname{Cov}(X,Y) = \left(\frac{5}{9}\right)^2 \cdot 4 = \boxed{\frac{100}{81}}.$$

 $\rho(T,S) = \rho(X,Y) = 0.8$, since correlation is scale and shift invariant.

Problem 3. (16 pts: 8,8)

(a) Let C_1, C_2, C_3 be the .5, .6, .1 coins respectively. We use a tree to represent the law of total probability. (We only include the paths on the tree we are interested in.)

(b) Let
$$Y = \text{number correct} \sim \text{Binom}(10, p).$$

$$P(Y \ge 9) = {10 \choose 9} p^9 (1-p) + p^{10} = {10 \choose 9} (0.775)^9 (0.225) + (0.775)^{10}.$$
(c) Answer: $p^6 = (0.775)^6$.

(d) I'd rather have a test with 10 questions, since the more questions the more likely I'll score close to the mean (law of large numbers), which at 77.5% is too low.

Problem 5. (20 pts: 4,4,4,4)
(a) Need
$$\int_{0}^{3} f_{X}(x) dx = 1 \Rightarrow \int_{0}^{3} kx^{2} dx = 1 \Rightarrow \frac{k3^{3}}{3} = 1 \Rightarrow \boxed{k = \frac{1}{9}}$$
.
For $0 \le x \le 3$, $F_{X}(x) = \int_{0}^{x} ku^{2} du = \frac{kx^{3}}{3} = \boxed{\frac{x^{3}}{27}}$.
Outside of [0,3]: $F_{X}(x) = 0$ for $x < 0$ and $F_{X}(x) = 1$ for $x > 2$.
(b) $F_{X}(q_{0.3}) = 0.3 \Rightarrow \frac{q_{0.3}^{3}}{27} = 0.3 \Rightarrow \boxed{q_{0.3} = (8.1)^{1/3}}$.
(c) $E(Y) = E(X^{3}) = \int_{0}^{3} x^{3} f_{X}(x) dx = \frac{1}{9} \int_{0}^{3} x^{5} dx = \frac{3^{6}}{54} = \boxed{\frac{27}{2}}$.
(d) $\operatorname{Var}(Y) = E((Y - \mu_{Y})^{2}) = \boxed{\int_{0}^{3} \left(x^{3} - \frac{27}{2}\right)^{2} \frac{x^{2}}{9} dx}$.
Or, $\operatorname{Var}(Y) = E(Y^{2}) - \left(\frac{27}{2}\right)^{2} = E(X^{6}) - \frac{27^{2}}{4} = \boxed{\int_{0}^{3} x^{6} \cdot \frac{x^{2}}{9} dx - \frac{27^{2}}{4}} = 3^{5} - 3^{6}/4 = 243/4$.

(e)
$$F_Y(y) = P(Y \le y) = P(X \le y^{1/3}) = F_X(y^{1/3}) = \frac{y}{27} \Rightarrow \begin{bmatrix} f_Y(y) = \frac{d}{dy}F_y = \frac{1}{27}, \text{ on } [0, 27] \end{bmatrix}$$

Alternatively, $f_Y(y) = \frac{d}{dy}F_Y(y) = F'_X(y^{1/3})\frac{1}{3}y^{-2/3} = f_X(y^{1/3})\frac{1}{3}y^{-2/3} = \frac{1}{9}y^{2/3}\frac{1}{3}y^{-2/3} = \frac{1}{27}.$

Problem 6. (15 pts: 10,5)

(a) Let S be the total number of minutes they are late for the year. The problem asks for P(S > 630).

Let $X_i = \text{how late they are on the ith day: } X_i \sim \exp(1/6)$. We know $E(X_i) = 6$, $\operatorname{Var}(X_i) = 6^2$. We have $S = \sum_{i=1}^{100} X_i$ and since (we assume) the X_i are i.i.d. we have

$$E(S) = 600, \quad Var(S) = 6^2 100, \quad \sigma_S = 60$$

The central limit theorem says that standardized S is approximately standard normal. So,

$$P(S > 630) = P\left(\frac{S - 600}{60} > \frac{630 - 600}{60}\right) \approx P(Z > 1/2) = 1 - \Phi(0.5) = 0.309.$$

The last value was found by using the table of standard normal probabilities

(b) Let T be the number of minutes they are late on a random day. The problem asks for

$$E(T^{2} + T) = \int_{0}^{\infty} (t^{2} + t) \frac{1}{6} e^{-t/6} dt.$$

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.