18.05 Exam 1 Solutions

Problem 0. (5 pts)
Turn in notecard.

Problem 1. (20 pts: 4, 4, 4,8)
(a) (Produced by counting reboots)

		R				
		1	2	3	8	
C	$\mathrm{Mac}=0$	$1 / 6$	$2 / 6$	0	$1 / 6$	$4 / 6$
	$\mathrm{PC}=1$	0	$1 / 6$	$1 / 6$	0	$2 / 6$
		$1 / 6$	$3 / 6$	$1 / 6$	$1 / 6$	1

(b) From the table: $E(C)=0 \cdot \frac{4}{6}+1 \cdot \frac{2}{6}=\boxed{\frac{1}{3}} \cdot \quad E(R)=1 \cdot \frac{1}{6}+2 \cdot \frac{3}{6}+3 \cdot \frac{1}{6}+8 \cdot \frac{1}{6}=\frac{18}{6}=3$.
(c) We use the formula $\operatorname{Cov}(C, R)=E(C R)-E(C) E(R)$.
$E(C R)=2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}=\frac{5}{6} \Rightarrow \operatorname{Cov}(C, R)=\frac{5}{6}-1=-\frac{1}{6}$.
Since covariance is not zero, they are not independent.
The negative covariance suggests that as C increases R tends to decrease. That is, PC users have to reboot less often than Mac users.

W
(d) (i) Independendent \Rightarrow joint $\mathrm{pmf}=$ product of marginal pmf's.
(ii) $P(W>M)=$ sum of red prob. in table $=\frac{1}{8}+\frac{1}{8}+\frac{1}{4}=\frac{1}{2}$.
(iii) $\operatorname{Cor}(W, M)=0$ since they are independent.

		2	3	
M	1	$1 / 8$	$1 / 8$	$1 / 4$
	2	$1 / 4$	$1 / 4$	$1 / 2$
	8	$1 / 8$	$1 / 8$	$1 / 4$
		$1 / 2$	$1 / 2$	1

Problem 2. (8 pts)
We are given that $T=\frac{5}{9} X-\frac{160}{9}$, and $\quad S=\frac{5}{9} Y-\frac{160}{9}$.
The algebraic properties of covariance say that $\operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)$. Thus,

$$
\operatorname{Cov}(T, S)=\frac{5}{9} \cdot \frac{5}{9} \operatorname{Cov}(X, Y)=\left(\frac{5}{9}\right)^{2} \cdot 4=\frac{100}{81}
$$

$\rho(T, S)=\rho(X, Y)=0.8$, since correlation is scale and shift invariant.
Problem 3. (16 pts: 8,8)
(a) Let C_{1}, C_{2}, C_{3} be the $.5, .6, .1$ coins respectively. We use a tree to represent the law of total probability. (We only include the paths on the tree we are interested in.)

So, $P(H T T)=\frac{1}{3}\left(\frac{1}{8}+(.6)(.4)^{2}+(.1)(.9)^{2}\right)=\frac{1}{3}\left(\frac{125}{1000}+\frac{96}{1000}+\frac{81}{1000}\right)=\frac{302}{3000}$.
(b) Bayes' Rule: $\quad P\left(C_{1} \mid H T T\right)=\frac{P\left(H T T \mid C_{1}\right) \cdot P\left(C_{1}\right)}{P(H T T)}=\frac{\frac{1}{8} \cdot \frac{1}{3}}{P(H T T)}=\frac{3000}{3 \cdot 8 \cdot 302}=\frac{125}{302}$.

Problem 4. (16 pts: 4, 4,4,4)
(a) $\mathrm{P}($ random question is correct $)=0.7+(0.25)(0.3)=0.775$.

Let X_{j} be success on question j, so $X_{j} \sim \operatorname{Bernoulli(0.775).~}$
Let $\bar{X}=$ average of the $X_{j}=$ score on exam.
$E(\bar{X})=E\left(X_{j}\right)=0.775$. Answer: 77.5\%.

(b) Let $Y=$ number correct $\sim \operatorname{Binom}(10, p)$.

$$
P(Y \geq 9)=\binom{10}{9} p^{9}(1-p)+p^{10}=\binom{10}{9}(0.775)^{9}(0.225)+(0.775)^{10}
$$

(c) Answer: $p^{6}=(0.775)^{6}$.
(d) I'd rather have a test with 10 questions, since the more questions the more likely

I'll score close to the mean (law of large numbers), which at 77.5% is too low.
Problem 5. (20 pts: 4, 4, 4, 4, 4)
(a) Need $\int_{0}^{3} f_{X}(x) d x=1 \Rightarrow \int_{0}^{3} k x^{2} d x=1 \Rightarrow \frac{k 3^{3}}{3}=1 \Rightarrow k=\frac{1}{9}$.

For $0 \leq x \leq 3, \quad F_{X}(x)=\int_{0}^{x} k u^{2} d u=\frac{k x^{3}}{3}=\frac{x^{3}}{27}$.
Outside of $[0,3]: \quad F_{X}(x)=0$ for $x<0$ and $F_{X}(x)=1$ for $x>2$.
(b) $F_{X}\left(q_{0.3}\right)=0.3 \Rightarrow \frac{q_{0.3}^{3}}{27}=0.3 \Rightarrow q_{0.3}=(8.1)^{1 / 3}$.
(c) $E(Y)=E\left(X^{3}\right)=\int_{0}^{3} x^{3} f_{X}(x) d x=\frac{1}{9} \int_{0}^{3} x^{5} d x=\frac{3^{6}}{54}=\frac{27}{2}$.
(d) $\operatorname{Var}(Y)=E\left(\left(Y-\mu_{Y}\right)^{2}\right)=\int_{0}^{3}\left(x^{3}-\frac{27}{2}\right)^{2} \frac{x^{2}}{9} d x$

Or, $\operatorname{Var}(Y)=E\left(Y^{2}\right)-\left(\frac{27}{2}\right)^{2}=E\left(X^{6}\right)-\frac{27^{2}}{4}=\int_{0}^{3} x^{6} \cdot \frac{x^{2}}{9} d x-\frac{27^{2}}{4}=3^{5}-3^{6} / 4=243 / 4$.
(e) $F_{Y}(y)=P(Y \leq y)=P\left(X \leq y^{1 / 3}\right)=F_{X}\left(y^{1 / 3}\right)=\frac{y}{27} \Rightarrow f_{Y}(y)=\frac{d}{d y} F_{y}=\frac{1}{27}$, on $[0,27]$.

Alternatively, $f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=F_{X}^{\prime}\left(y^{1 / 3}\right) \frac{1}{3} y^{-2 / 3}=f_{X}\left(y^{1 / 3}\right) \frac{1}{3} y^{-2 / 3}=\frac{1}{9} y^{2 / 3} \frac{1}{3} y^{-2 / 3}=\frac{1}{27}$.

Problem 6. ($15 \mathrm{pts}: 10,5$)
(a) Let S be the total number of minutes they are late for the year. The problem asks for $P(S>630)$.
Let $X_{i}=$ how late they are on the ith day: $X_{i} \sim \exp (1 / 6)$. We know $E\left(X_{i}\right)=6, \quad \operatorname{Var}\left(X_{i}\right)=6^{2}$.
We have $S=\sum_{i=1}^{100} X_{i}$ and since (we assume) the X_{i} are i.i.d. we have

$$
E(S)=600, \quad \operatorname{Var}(S)=6^{2} 100, \quad \sigma_{S}=60
$$

The central limit theorem says that standardized S is approximately standard normal.
So,

$$
P(S>630)=P\left(\frac{S-600}{60}>\frac{630-600}{60}\right) \approx P(Z>1 / 2)=1-\Phi(0.5)=0.309
$$

The last value was found by using the table of standard normal probabilities
(b) Let T be the number of minutes they are late on a random day. The problem asks for

$$
E\left(T^{2}+T\right)=\int_{0}^{\infty}\left(t^{2}+t\right) \frac{1}{6} \mathrm{e}^{-t / 6} d t
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

