
Exam 2 Practice Questions –solutions, 18.05,
 
Spring 2014
 

1 Topics 

•	 Statistics: data, MLE (pset 5) 

•	 Bayesian inference: prior, likelihood, posterior, predictive probability, probabil
ity intervals (psets 5, 6) 

•	 Frequentist inference: NHST (psets 7, 8) 

2 Using the probability tables 

You should become familiar with the probability tables at the end of these notes. 

1. (a) (i) The table gives this value as P (Z < 1.5) = 0.9332. 

(ii) This is the complement of the answer in (i): P (Z > 1.5) = 1 − 0.9332 = 0.0668. 
Or by symmetry we could use the table for -1.5. 

(iii) We want P (Z < 1.5) − P (Z < −1.5) = P (Z < 1.5) − P (Z > 1.5). This is the 
difference of the answers in (i) and (ii): .8664. 

(iv) A rough estimate is the average of P (Z < 1.6) and P (Z < 1.65). That is, 

P (Z < 1.6) + P (Z < 1.65) .9452 + .9505 
P (Z < 1.625) ≈	 = = .9479. 

2	 2 

(b) (i) We are looking for the table entry with probability 0.95. This is between the 
table entries for z = 1.65 and z = 1.60 and very close to that of z = 1.65. Answer: 
the region is [1.64, ∞). (R gives the ‘exact’ lower limit as 1.644854.) 

(ii) We want the table entry with probability 0.1. The table probabilities for z = 
−1.25 and z = −1.30 are 0.1056 and 0.0968. Since 0.1 is about 1/2 way from the 
first to the second we take the left critical value as -1.275. Our region is 

(−∞, −1.275) ∪ (1.275, ∞). 

(R gives qnorm(0.1, 0, 1) = -1.2816.) 

(iii) This is the range from q0.25 to q0.75. With the table we estimate q0.25 is about 
1/2 of the way from -0.65 to -0.70, i.e. ≈ −0.675. So, the range is [−0.675, 0.675]. 

2. (a) (i) The question asks for the table value for t = 1.6, df = 3: 0.8960 . 

(ii) P (T > 1.6) = 1 − P (T < 1.6) = 0.0703. 
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(iii) By symmetry P (T < −1.6) = 1 − P (T < 1.6). We want P (T < 1.6) − P (T < 
−1.6) = 2P (T < 1.6) − 1 = 2(0.9420) − 1 = 0.8840. 

(iv) A rough estimate is the average of P (T < 1.6) and P (T < 1.8). That is, 

P (T < 1.6) + P (T < 1.8) 0.9413 + 0.9603 
P (T < 1.7) ≈	 = = 0.9508. 

2 2 

(The ‘true’ answer using R is 0.9516) 

(b) (i) We are looking for the table entry with probability 0.95. This is about 1/3 of 
way between the table entries for t = 1.8 and t = 2.0 in the df = 8 column. Answer: 
1.867. (R gives the ‘exact’ critical value as 1.860.) 

(ii) We want the table entry with probability 0.9 in the df = 16 column. This is 
about 70% of the way from t = 1.2 to t = 1.4: t = 1.34. Our region is 

(−∞, −1.34) ∪ (1.34, ∞). 

(R gives qt(0.1, 16) = -1.3368.) 

(iii) This is the range from q0.25 to q0.75. With the table we estimate q0.75 is about 1/2 
of the way from 0.6 to 0.8, i.e. ≈ −0.7. So, the range is [−0.7, 0.7]. (True answer is 
[−0.6870, 0.6870].) 

3. (a) (i) Looking in the df = 3 row of the chi-square table we see that 1.6 is 
about 2/2 of the way between the values for p = 0.7 and p = .06. So we approximate 
P (X2 > 1.6) ≈ 0.66. (The true value is 0.6594.) 

(ii) Looking in the df = 16 row of the chi-square table we see that 20 is between the 
values for p = 0.2 and p = 0.3. We estimate P (X2 > 20) = 0.225. (The true value is 
0.220) 

(b) (i) This is in the table in the df = 8 row under p = 0.05. Answer: 15.51 

(ii) We want the critical values for p = 0.9 and p = 0.1 from the df = 16 row of the 
table. 

[0, 9.31] ∪ [23.54, ∞). 

3 Data 

4.	 Sample mean 20/5 = 4. 
12 + (−3)2 + (−1)2 + (−1)2 + 42 

Sample variance =	 = 7. 
5 − 1√ 

Sample standard deviation = 7. 

Sample median = 3. 
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4 MLE 

5. (a) The likelihood function is 

100 
θ62(1 − θ)38 = cθ62(1 − θ)38 p(data|θ) = . 

62 

To find the MLE we find the derivative of the log-likelihood and set it to 0. 

ln(p(data|θ)) = ln(c) + 62 ln(θ) + 38 ln(1 − θ). 

d ln(p(data|θ)) 62 38 
= − = 0. 

dθ θ 1 − θ 

The algebra leads to the MLE θ = 62/100 . 

(b) The computation is identical to part (a). The likelihood function is 

n 
p(data|θ) = θn(1 − θ)k = cθn(1 − θ)k . 

k 

To find the MLE we set the derivative of the log-likelihood and set it to 0. 

ln(p(data|θ)) = ln(c) + n ln(θ) + k ln(1 − θ). 

d ln(p(data|θ)) n k 
= − = 0. 

dθ θ 1 − θ 

The algebra leads to the MLE θ = k/n . 

6. If N < max(yi) then the likelihood p(y1, . . . , yn|N) = 0. So the likelihood 
function is  

0 if N < max(yi)
p(y1, . . . , yn|N) =   

1 n 
if N ≥ max(yi)N

This is maximized when N is as small as possible. Since N ≥ max(yi) the MLE is 
N = max(yi). 

7. The pdf of exp(λ) is p(x|λ) = λe−λx . So the likelihood and log-likelihood 
functions are  

−λ(x1+···+xn)p(data|λ) = λn e , ln(p(data|λ)) = n ln(λ) − λ xi. 

Taking a derivative with respect to λ and setting it equal to 0: 

d ln(p(data|λ)) 
= 

n −
 

xi = 0 ⇒ 
1 
=

 
xi 

= x̄. 
dλ λ λ n 
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So the MLE is λ = 1/x̄ . 

xi−1	 xi−1
1 1 a − 1 1 

8.	 P (xi|a) = 1 − . = . 
a a a a 

So, the likelihood function is  
xi−n n 

a − 1 1 
P (data|a) = 

a a 

The log likelihood is   
ln(P (data|a)) = xi − n (ln(a − 1) − ln(a)) − n ln(a). 

Taking the derivative   d ln(P (data|a))	 1 1 n xi 
= xi − n − − = 0 ⇒ = a. 

d a	 a − 1 a a n 

The maximum likelihood estimate is a = x̄ . 

9. If there are n students in the room then for the data 1, 3, 7 (occuring in any 
order) the likelihood is ⎧ ⎨0 for n < 7 

p(data | n) = n 3!⎩1/ = for n ≥ 7 
n(n−1)(n−2)3 

Maximizing this does not require calculus. It clearly has a maximum when n is as 
small as possible. Answer: n = 7 . 

5	 Bayesian updating: discrete prior, discrete like
lihood 

10.	 This is a Bayes’ theorem problem. The likelihoods are 

P(same sex | identical) = 1 P(different sex | identical) = 0 
P(same sex | fraternal) = 1/2 P(different sex | fraternal) = 1/2 

The data is ‘the twins are the same sex’. We find the answer with an update table 

hyp. prior likelihood unnorm. post. posterior 
identical 1/3 1 1/3 1/2 
fraternal 2/3 1/2 1/3 1/2 
Tot. 1 2/3 1 

So
 P(identical | same sex) = 1/2 .
 

( ) ( )

( ) ( )

∑

∑ ( ) ∑

( )
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11. (a) The data is 5. Let Hn be the hypothesis the die is n-sided. Here is the 
update table. 

hyp. prior likelihood unnorm. post. posterior 
H4 1 0 0 0 
H6 2 (1/6)2 2/36 0.243457 
H8 10 (1/8)2 10/64 0.684723 
H12 2 (1/12)2 2/144 0.060864 
H20 1 (1/20)2 1/400 0.010956 
Tot. 16 0.22819 1 

So P (H8|data) = 0.685. 

(b) We are asked for posterior predictive probabilities. Let x be the value of the 
next roll. We have to compute the total probability 

p(x|data) = p(x|H)p(H|data) = likelihood × posterior. 

The sum is over all hypotheses. We can organize the calculation in a table where 
we multiply the posterior column by the appropriate likelihood column. The total 
posterior predictive probability is the sum of the product column. 

hyp. posterior likelihood post. to (i) likelihood post. to (ii) 
to data (i) x = 5 (ii) x = 15 

H4 0 0 0 0 0 
H6 0.243457 1/6 0.04058 0 0 
H8 0.684723 1/8 0.08559 0 0 
H12 0.060864 1/12 0.00507 0 0 
H20 0.010956 1/20 0.00055 1/20 0.00055 
Tot. 0.22819 0.13179 0.00055 

So, (i) p(x = 5|data) = 0.132 and (ii) p(x = 15|data) = 0.00055. 

12. (a) Solution to (a) is with part (b). 

(b) Let θ be the probability of the selected coin landing on heads. Given θ, we 
know that the number of heads observed before the first tails, X, is a geo(θ) random 
variable. We have updating table: 

Hyp. Prior Likelihood Unnorm. Post. Posterior 
θ = 1/2 1/2 (1/2)3(1/2) 1/25 16/43 
θ = 3/4 1/2 (3/4)3(1/4) 34/2 · 44 27/43 
Total 1 – 43/256 1 

The prior odds for the fair coin are 1, the posterior odds are 16/27. The prior 
predictive probability of heads is 0.5 · 

2
1 +0.75 · 

2
1 . The posterior predictive probability 

16 27of heads is 0.5 · + 0.75 · .
43 43 

∑ ∑
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6	 Bayesian Updating: continuous prior, discrete 
likelihood 

13.	 (a) x1 ∼ Bin(10, θ). 

(b)	 We have prior: 
f(θ) = c1θ(1 − θ) 

and likelihood: 

10 
p(x1 = 6 | θ) = c2θ

6(1 − θ)4 , where c2 = . 
6 

The unnormalized posterior is f(θ)p(x1|θ) = c1c2θ7(1 − θ)5 . So the normalized pos
terior is 

f(θ|x1) = c3θ
7(1 − θ)5 

Since the posterior has the form of a beta(8, 6) distribution it must be a beta(8, 6) 
distribution. We can look up the normalizing coefficient c3 = 13! .

7! 5! 

(c)	 The 50% interval is 
[qbeta(0.25,8,6), qbeta(0.75,8,6)] = [0.48330, 0.66319] 

The 90% interval is 
[qbeta(0.05,8,6), qbeta(0.95,8,6)] = [0.35480, 0.77604] 

(d) If the majority prefer Bayes then θ > 0.5. Since the 50% interval includes 
θ < 0.5 and the 90% interval covers a lot of θ < 0.5 we don’t have a strong case that 
θ > 0.5. 

As a further test we compute P (θ < 0.5|x1) = pbeta(0.5,8,6) = 0.29053. So there 
is still a 29% posterior probability that the majority prefers frequentist statistics. 

(e) Let x2 be the result of the second poll. We want p(x2 > 5|x1). We can compute 
this using the law of total probability: � 1 

p(x2 > 5|x1) = p(x2 > 5|θ)p(θ|x1) dθ. 
0 

The two factors in the integral are: 

10	 10 10 
p(x2 > 5|θ) = θ6(1 − θ)4 + θ7(1 − θ)3 + θ8(1 − θ)2 

6	 7 8 
10	 10 

+ θ9(1 − θ)1 + θ10(1 − θ)0 

9	 10 
13! 

p(θ|x1) = θ7(1 − θ)5 

7!5! 

This can be computed exactly or numerically in R using the integrate() function. 
The answer is P (x2 > 5 |x1 = 6) = 0.5521. 

( )

( ) ( ) ( )
( ) ( )
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7 Bayesian Updating: 
likelihood 

discrete prior, continuous 

14. For a fixed θ the likelihood is 

f(x|θ) = 
1/θ for x ≤ θ 

0 for x ≥ θ 

If Alice arrived 10 minutes late, we have table 

Hypothesis Prior Likelihood for x = 1/6 Unnorm. Post Posterior 
θ = 1/4 1/2 4 2 3/4 
θ = 3/4 1/2 4/3 2/3 1/4 
Total 1 – 8/3 1 

In this case the most likely value of θ is 1/4. 

If Alice arrived 30 minutes late, we have table 

Hypothesis Prior Likelihood for x = 1/2 Unnorm. Post Posterior 
θ = 1/4 1/2 0 0 0 
θ = 3/4 1/2 4/3 2/3 1 
Total 1 – 2/3 1 

In this case the most likely value of θ is 3/4. 

8	 Bayesian Updating: continuous prior, continu
ous likelihood 

15.	 (a) We have µprior = 9, σ2 = 1 and σ2 = 10−4 . The normal-normal updating prior 

formulas are 

1 n aµprior + bx̄	 1 
a = b = , µpost = , σ2 = . 

σ2	 post σ2	 a + b a + bprior 

So we compute a = 1/1, b = 10000, σ2 = 1/(a + b) = 1/10001 and post 

aµprior + bx 100009 
µpost = = ≈ 9.990 

a + b 10001 

So we have posterior distribution f(θ|x = 10) ∼ N(9.99990, 0.0099). 

(b)	 We have σ2 = 1 and σ2 = 10−4 . The posterior variance of θ given observations prior 

x1, . . . , xn is given by 
1 1 

= 1 + n 1 + n · 104 
σ2 σ2 
prior 

{



�
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We wish to find n such that the above quantity is less than 10−6 . It is not hard to 
see that n = 100 is the smallest value such that this is true. 

16. We have likelihood function 

5

−λxi −λ(x1+x2+···+x5) −2λf(x1, . . . , x5|λ) = λe = λ5 e = λ5 e 
i=1 

So our posterior density is proportional to: 

f(λ)f(x1, . . . , x5|λ) ∝ λ9 e −3λ 

The hint allows us to compute the normalizing factor. (Or we could recognize this as 
the pdf of a Gamma random variable with parameters 10 and 3. Thus, the density is 

310 

5 

f(λ|x1, . . . , x5) = λ9 e −3λ . 
9! 

17. (a) Let X be a random decay distance. 

20 

Z(λ) = P (detection | λ) = P (1 ≤ X ≤ 20 | λ) = λe −λx dx = e −λ − e −20λ . 
1 

(b) Fully specifying the likelihood (remember detection only occurs for 1 ≤ x ≤ 20). 

−λx 
f(x and detected | λ) λ

Z
e
(λ) for 1 ≤ x ≤ 20 

likelihood = f(x | λ, detected) = = 
f(detected | λ) 0 otherwise 

(c) Let Λ be the random variable for λ. Let X = 1/Λ be the random variable for 
the mean. 

We are given that X is uniform on [5, 30] ⇒ fX (x) = 1/25. 

First we find fΛ(λ) by finding and then differentiating FΛ(λ). 

1 1 1 
FΛ(λ) = P (Λ < λ) = P > = P X > 

Λ λ λ ⎧ ⎪⎨
1 for 5 < 1/λ
 
⎧ ⎪⎨
1 for λ < 5
 

30−1/λ for 5 < 1/λ < 30 = 30 − 1 for 1/30 < λ < 1/5
 ⎪⎩

25 ⎪⎩


25 25λ 

0 for 1/λ > 30
 0 for λ < 1/30
 

Taking the derivative we get 

1 1 1 
fΛ(λ) = FΛ

� (λ) = on < λ < . 
25λ2 30 5 

∫

( ) ( )

{
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−λxiλe
From part (b) the likelihood f(xi | λ) = . So the likelihood 

Z(λ) 

λ4 −λ xi λ4 −43λe e
f(data | λ) = = 

Z(λ)4 Z(λ)4 

Now we have the prior and likelihood so we can do a Bayesian update:
 

Hypothesis prior likelihood posterior 

λ 

(1/30 < λ < 1/5) 

1 
25λ2 

λ4e−43λ 

Z(λ)4 
c 
λ2e−43λ 

Z(λ)4 

1 1 P (λ < 1/10)
Odds > 10 = Odds λ < = 

λ 10 P (λ > 1/10) 

1/10 1/10 −43λλ2e
posterior dλ dλ 

Z(λ)4 
1/30 1/30 

= = 
1/5 1/5 λ2 −43λe

posterior dλ dλ 
Z(λ)4 

1/10 1/10 

Using the R function integrate() we computed Odds 
λ 
1 > 10 ≈ 10.1. 

9 NHST 

18. (a) Our z-statistic is 

x̄− µ 6.25 − 4 
z = √ = = 1.575 

σ/ n 10/7 

Under the null hypothesis z ∼ N(0, 1) The two-sided p-value is 

p = 2 × P (Z > 1.575) = 2 × 0.0576 = 0.1152 

The probability was computed from the z-table. We interpolated between z = 1.57 
and z = 1.58 Because p > α we do not reject H0. 

(b) The null pdf is standard normal as shown. The red shaded area is over the 
rejection region. The area used to compute significance is shown in red. The area 
used to compute the p-value is shown with blue stripes. Note, the z-statistic outside 
the rejection region corresponds to the blue completely covering the red. 

∑

( ) ( )
∫
∫

∫
∫
( )
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z

f(z|H0) ∼ N(0, 1)

z.975 = −1.96 z.025 = 1.96

reject H0 reject H0accept H0

z = 1.575

19. (a) Our t-statistic is 

x̄− µ 6.25 − 4 √ = = 2.625 
s/ n 6/7 

Under the null hypothesis t ∼ t48. Using the t-table we find the two-sided p-value is 

p = 2 × P (t > 2.625) < 2 × 0.005 = 0.01 

Because p < α we reject H0. 

(b) The null pdf is a t-distribution as shown. The rejection region is shown. The 
area used to compute significance is shown in red. The area used to compute the 
p-value is shown with blue stripes. Note, the t-statistic is inside the rejection region 
corresponds. This corresponds to the red completely covering the blue. The critical 
values for t48 we’re looked up in the table. 

t

f(t|H0) ∼ t48

t.975 = −2.011 t.025 = 2.011

reject H0 reject H0accept H0

t = 2.625

20. Probability, MLE, goodness of fit 
(a) (i) This is a binomial distribution. Let θ be the Bernoulli probability of success 

p(x = k) = 
12 

θk(1 − θ)1−k , for k = 0, 1, . . . , 12. 
k 

( )
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(ii) This is a version of a geometric distribuiton 

p(x = k) = θk(1 − θ), for k = 0, 1, . . . 

(b)	 (i) The likelihood function for n trials is 

12 12 12 
p(x1, x2, . . . , xn | θ) = θx1 (1 − θ)12−x1 θx2 (1 − θ)12−x2 · · · θxn (1 − θ)12−xn 

x1 x2 xn 

12−xi= cθ xi (1 − θ) 

To find the maximum we use the log likelihood. We also substitute nx̄ for xi. 

ln(p(data | θ) = ln(c) + nx̄ ln(θ) + n(12 − x̄) ln(1 − θ). 

To find the maximum we set the derivative to 0: 

d ln(p(data | θ)) nx̄ n(12 − x̄) 
=	 − = 0. 

d θ θ 1 − θ 

Solving for θ we get 
x̄

θ̂ =	 . 
12 

(ii) The likelihood function for n trials is 

p(x1, x2, . . . , xn | θ) = θx1 (1 − θ)θx2 (1 − θ) · · · θxn (1 − θ) = θ xi (1 − θ)n 

To find the maximum we use the log likelihood. We also substitute nx̄ for xi. 

ln(p(data | θ)) = nx̄ ln(θ) + n ln(1 − θ). 

To find the maximum we set the derivative to 0: 

d ln(p(data | θ)) nx̄ n 
=	 − = 0. 

d θ θ 1 − θ 

Solving for θ we get 
x̄

θ̂ = . 
1 + x̄ 

(c)	 The sample mean is 

(count × x) 
x̄ = 

counts 
18 · 0 + 12 · 1 + 7 · 2 + 10 · 3 + 3 · 4 + 2 · 5 + 3 · 6 + 2 · 7 + 1 · 8 + 1 · 9 + 0 · 10 + 1 · 11 

= 
60
 

= 2.30
 

(d) Just plug x̄ = 2.3 into the formulas from part (b): 
(i) θ̂ = x/12 = 2.3/12 = 0.19167 θ = x/¯ (1 + ¯¯	 (ii) ˆ x) = 2.3/3.3 = 0.69697 

( ) ( ) ( )
∑ ∑

∑

∑
∑

∑∑



 

 

12 Exam 2 Practice 2, Spring 2014 

(e) There were 60 trials in all. Using the the values for θ̂ in part (d) we have the 
following tables. The probabilities are computed using R, the expected values are just 
the probabilities time 60. The components of X2 are computed using the formula 

X2 
i = (Ei − Oi)

2/Ei. 

For Experiment 1:
 
H0 is the data comes from a binomial(12, 0.193) distribution.
 
HA is it comes from some other distribution.
 

x 0 1 2 3 ≥ 4 
p(x) 0.077819 0.221423 0.288763 0.228232 0.183762 

Observed 18 12 7 10 13 
Expected 4.6691 13.2854 17.3258 13.6939 11.0257 

X2 
i 38.06090 0.12437 6.15395 0.99644 0.35351 

The χ2 statistic is X2 = Xi 
2 = 45.689. There are 5 cells, so 3 degrees of freedom. 

The p-values is 
p = 1-pchisq(45.689,4) = 2.86e-9 

With this p-value we reject H0 in favor of the explanation that the data comes from 
a different distribution. 

For Experiment 2: 
H0 is the data comes from a geometric(0.698) distribution, You have to be careful 
here. We define geometric(θ) as the number of successes before the first failure, where 
θ is the probability of success. In R the geometeric distribution is the opposite. It 
gives the number of failures till the first success. So, for calculations in R we have we 
use dgeom(x, 1 - 0.698) etc.) 

HA is it comes from some other distribution. 

x 0 1 2 3 ≥ 4 
p(x) 0.30303 0.21120 0.14720 0.10260 0.23597 

Observed 18 12 7 10 13 
Expected 18.1818 12.6722 8.8321 6.1557 14.1582 

X2 
i 0.0018182 0.0356546 0.3800529 2.4007701 0.0947394 

The χ2 statistic is X2 = Xi 
2 = 2.9130. There are 5 cells, so 4 degrees of freedom. 

The p-values is 
p = 1-pchisq(2.9130, 4) = 0.573 

With this p-value we do not reject H0. 

21. See the psets 7 and 8. 

∑

∑
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