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Confidence Intervals: Three Views  
Class 23, 18.05, Spring 2014  

Jeremy Orloff and Jonathan Bloom  

Learning Goals 

1. Be able to produce z, t and χ2 confidence intervals based on the corresponding stan
dardized statistics. 

2. Be able to use a hypothesis test to construct a confidence interval for an unknown 
parameter. 

3. Refuse to answer questions that ask, in essence, ‘given a confidence interval what is 
the probability or odds that it contains the true value of the unknown parameter?’ 

2 Introduction 

Our approach to confidence intervals in the previous reading was a combination of stan
dardized statistics and hypothesis testing. Today we will consider each of these perspectives 
separately, as well as introduce a third formal viewpoint. Each provides its own insight. 

1. Standardized statistic. Most confidence intervals are based on standardized statistics 
with known distributions like z, t or χ2 . This provides a straightforward way to construct 
and interpret confidence intervals as a point estimate plus or minus some error. 

2. Hypothesis testing. Confidence intervals may also be constructed from hypothesis 
tests. In cases where we don’t have a standardized statistic this method will still work. It 
agrees with the standardized statistic approach in cases where they both apply. 

This view connects the notions of significance level α for hypothesis testing and confidence 
level 1 − α for confidence intervals; we will see that in both cases α is the probability of 
making a ‘type 1’ error. This gives some insight into the use of the word confidence. This 
view also helps to emphasize the frequentist nature of confidence intervals. 

3. Formal. The formal definition of confidence intervals is perfectly precise and general. 
In a mathematical sense it gives insight into the inner workings of confidence intervals. 
However, because it is so general it sometimes leads to confidence intervals without useful 
properties. We will not dwell on this approach. We offer it mainly for those who are 
interested. 

3 Confidence intervals via standardized statistics 

The strategy here is essentially the same as in the previous reading. Assuming normal data 
we have what we called standardized statistics like the standardized mean, Studentized 
mean, and standardized variance. These statistics have well known distributions which 
depend on hypothesized values of μ and σ. We then use algebra to produce confidence 
intervals for μ or σ. 
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Don’t let the algebraic details distract you from the essentially simple idea underlying 
confidence intervals: we start with a standardized statistic (e.g., z, t or χ2) and use some 
algebra to get an interval that depends only on the data and known parameters. 

3.1 z-confidence intervals for μ: normal data with known σ 

z-confidence intervals for the mean of normal data are based on the standardized mean, i.e. 
the z-statistic. We start with n independent normal samples 

x1, x2, . . . , xn ∼ N(μ, σ2). 

We assume that μ is the unknown parameter of interest and σ is known. 

We know that the standardized mean is standard normal: 
x− μ 

z = √ ∼ N(0, 1). 
σ/ n 

For the standard normal critical value zα/2 we have: P (−zα/2 < Z < zα/2) = 1  − α. 

Thus,   
x− μ 

P −zα/2 < √ < zα/2 | μ = 1  − α 
σ/ n 

A little bit of algebra puts this in the form of an interval around μ:   
σ σ 

P x− zα/2 · √ < μ < x+ zα/2 · √ | μ = 1  − α 
n n 

We can emphasize that the interval depends only on the statistic x and the  known value  σ 
by writing this as 

σ σ 
P x− zα/2 · √ , x+ zα/2 · √ contains μ | μ = 1  − α. 

n n 

This is the (1 − α) z-confidence interval for μ. We often write it using the shorthand 
σ 

x± zα/2 · √ 
n 

Think of it as x± error. 

Make sure you notice that the probabilities are conditioned on μ. As with all frequen
tist statistics, we have to fix hypothesized values of the parameters in order to compute 
probabilities. 

3.2 t-confidence intervals for μ: normal data with unknowm μ and σ 

t-confidence intervals for the mean of normal data are based on the Studentized mean, i.e. 
the t-statistic. 

Again we have x1, x2, . . . , xn ∼ N(μ, σ2), but now we assume both μ and σ are unknown. 
We know that the Studentized mean follows a Student t distribution with n− 1 degrees of 
freedom. That is, 

x− μ 
t = √ ∼ t(n− 1),

s/ n 



  
x− μ 

P −tα/2 < √ < tα/2 | μ = 1  − α. 
s/ n 

  
s s 

P x− tα/2 · √ < μ < x+ tα/2 · √ | μ = 1  − α 
n n 

 � �  
s s 

P x− tα/2 · √ , x+ tα/2 · √ contains μ | μ = 1  − α. 
n n 

2(n− 1)s
X2 = 

σ2 ∼ χ2(n− 1). 

  
2(n− 1)s

P c1−α/2 < < cα/2 | σ = 1  − α 
σ2 

  
2 2(n− 1)s (n− 1)s

P < σ2 < | σ = 1  − α 
cα/2 c1−α/2 
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where s2 is the sample variance. 

Now all we have to do is replace the standardized mean by the Studentized mean and the 
same logic gives us the t-confidence interval: start with 

A little bit of algebra isolates μ in the middle of an interval: 

We can emphasize that the interval depends only on the statistics x and s by writing this 
as 

This is the (1 − α) t-confidence interval for μ. We often write it using the shorthand 
s 

x± tα/2 · √ 
n 

Think of it as x± error. 

3.3 χ2-confidence intervals for σ2: normal data with unknown μ and σ 

You guessed it: χ2-confidence intervals for the variance of normal data are based on the 
‘standardized variance’, i.e. the χ2-statistic.  

We follow the same logic as above to get a χ2-confidence interval for σ2 . Because this is  
the third time through it we’ll move a little more quickly.  

We assume we have n independent normal samples: x1, x2, . . . , xn ∼ N(μ, σ2). We assume  
that μ and σ are both unknown.  

We know that the X2 statistic follows a χ2 distribution with n− 1 degrees of freedom:  

For Z and t we used, without comment, the symmetry of the distributions to replace z1−α/2 
by −zα/2 and t1−α/2 by −tα/2. Because the χ2 distribution is not symmetric we need to be 
explicit about the critical values on both the left and the right. That is, 

P (c1 α/2 < X2 < cα/2) = 1   α, − −
where cα/2 and c1−α/2 are right tail critical values. Thus, 

A little bit of algebra puts this in the form of an interval around σ2: 

( )
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P , contains σ2 | σ2 = 1  − α. 
cα/2 c1−α/2 
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We can emphasize that the interval depends only on the statistic s2 by writing this as 

This is the (1 − α) χ2-confidence interval for σ2 . 

Confidence intervals via hypothesis testing 

Suppose we have data drawn from a distribution with a parameter θ whose value is unknown. 
A significance test for the value θ has the following short description. 

1. Set the null hypothesis H0 : θ = θ0 for some special value θ0, e.g. we often have H0 : 
θ = 0.  

2. Use the data to compute the value of a test statistic, call it x. 

3. If x is far enough into the tail of the null distribution (the distribution assuming the null 
hypothesis) then we reject H0. 

In the case where there is no special value to test we may still want to estimate θ. This  is  
the reverse of significance testing; rather than seeing if we should reject a specific value of 
θ because it doesn’t fit the data we want to find the range of values of θ that do, in some 
sense, fit the data. This gives us the following definitions. 

Definition. Given a value x of the test statistic, the (1 − α) confidence interval contains all 
values θ0 which are not rejected (at significance level α) when they are the null hypothesis. 

Definition. A type 1 CI error occurs when the confidence interval does not contain the 
true value of θ. 

For a (1 − α) confidence interval the type 1 CI error rate is α. 

Example 1. Here is an example relating confidence intervals and hypothesis tests. Suppose 
data x is drawn from a binomial(12, θ) distribution with θ unknown. Let α = .1 and create 
the (1 − α) = 90% confidence interval for each possible value of x. 

Our strategy is to look at one possible value of θ at a time and choose rejection regions for 
a significance test with α = .1. Once this is done, we will know, for each value of x, which  
values of θ are not rejected, i.e. the confidence interval associated with x. 

To start we set up a likelihood table for binomial(12, θ) in Table 1. Each row shows the 
probabilities p(x|θ) for one value of θ. To keep the size manageable we only show θ in 
increments of 0.1. 

([ ] )
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θ/x 0 1 2 3 4 5 6 7 8 9 10 11 12 
1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.09 0.23 0.38 0.28 
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.13 0.24 0.28 0.21 0.07 
0.7 0.00 0.00 0.00 0.00 0.01 0.03 0.08 0.16 0.23 0.24 0.17 0.07 0.01 
0.6 0.00 0.00 0.00 0.01 0.04 0.10 0.18 0.23 0.21 0.14 0.06 0.02 0.00 
0.5 0.00 0.00 0.02 0.05 0.12 0.19 0.23 0.19 0.12 0.05 0.02 0.00 0.00 
0.4 0.00 0.02 0.06 0.14 0.21 0.23 0.18 0.10 0.04 0.01 0.00 0.00 0.00 
0.3 0.01 0.07 0.17 0.24 0.23 0.16 0.08 0.03 0.01 0.00 0.00 0.00 0.00 
0.2 0.07 0.21 0.28 0.24 0.13 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
0.1 0.28 0.38 0.23 0.09 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Table 1. Likelihood table for Binomial(12, θ) 

Tables 2-4 below show the rejection region (in orange) and non-rejection region (in blue) for the 
various values of θ. To emphasize the row-by-row nature of the process the Table 2 just shows these 
regions for θ = 1.0, then Table 3 adds in regions for θ = 0.9 and Table 4 shows them for all the 
values of θ. 

Immediately following the tables we give a detailed explanation of how the rejection/non-rejection 
regions were chosen. 
θ/x 0 1 2 3 4 5 6 7 8 9 10 11 12 
1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.09 0.23 0.38 0.28 
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.13 0.24 0.28 0.21 0.07 
0.7 0.00 0.00 0.00 0.00 0.01 0.03 0.08 0.16 0.23 0.24 0.17 0.07 0.01 
0.6 0.00 0.00 0.00 0.01 0.04 0.10 0.18 0.23 0.21 0.14 0.06 0.02 0.00 
0.5 0.00 0.00 0.02 0.05 0.12 0.19 0.23 0.19 0.12 0.05 0.02 0.00 0.00 
0.4 0.00 0.02 0.06 0.14 0.21 0.23 0.18 0.10 0.04 0.01 0.00 0.00 0.00 
0.3 0.01 0.07 0.17 0.24 0.23 0.16 0.08 0.03 0.01 0.00 0.00 0.00 0.00 
0.2 0.07 0.21 0.28 0.24 0.13 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
0.1 0.28 0.38 0.23 0.09 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

significance 
0.000 

Table 2. Likelihood table for binomial(12, θ) with rejection/non-rejection regions for θ = 1.0 

θ/x 0 1 2 3 4 5 6 7 8 9 10 11 12 
1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.09 0.23 0.38 0.28 
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.13 0.24 0.28 0.21 0.07 
0.7 0.00 0.00 0.00 0.00 0.01 0.03 0.08 0.16 0.23 0.24 0.17 0.07 0.01 
0.6 0.00 0.00 0.00 0.01 0.04 0.10 0.18 0.23 0.21 0.14 0.06 0.02 0.00 
0.5 0.00 0.00 0.02 0.05 0.12 0.19 0.23 0.19 0.12 0.05 0.02 0.00 0.00 
0.4 0.00 0.02 0.06 0.14 0.21 0.23 0.18 0.10 0.04 0.01 0.00 0.00 0.00 
0.3 0.01 0.07 0.17 0.24 0.23 0.16 0.08 0.03 0.01 0.00 0.00 0.00 0.00 
0.2 0.07 0.21 0.28 0.24 0.13 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
0.1 0.28 0.38 0.23 0.09 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

significance 
0.000 
0.026 

Table 3. Likelihood table with rejection/non-rejection regions shown for θ = 1.0 and  0.9 
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significanceθ/x 0 1 2 3 4 5 6 7 8 9 10 11 12 
1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.09 0.23 0.38 0.28 
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.13 0.24 0.28 0.21 0.07 
0.7 0.00 0.00 0.00 0.00 0.01 0.03 0.08 0.16 0.23 0.24 0.17 0.07 0.01 
0.6 0.00 0.00 0.00 0.01 0.04 0.10 0.18 0.23 0.21 0.14 0.06 0.02 0.00 
0.5 0.00 0.00 0.02 0.05 0.12 0.19 0.23 0.19 0.12 0.05 0.02 0.00 0.00 
0.4 0.00 0.02 0.06 0.14 0.21 0.23 0.18 0.10 0.04 0.01 0.00 0.00 0.00 
0.3 0.01 0.07 0.17 0.24 0.23 0.16 0.08 0.03 0.01 0.00 0.00 0.00 0.00 
0.2 0.07 0.21 0.28 0.24 0.13 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
0.1 0.28 0.38 0.23 0.09 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.000 
0.026 
0.073 
0.052 
0.077 
0.092 
0.077 
0.052 
0.073 
0.026 
0.000 

Table 4. Likelihood table with rejection/non-rejection regions for θ = 0.0 to 1.0 

Choosing the rejection and non-rejection regions in the tables 
The first problem we confront is how exactly to choose the rejection region. We used two rules: 

1. The total probabilitiy of the rejection region, i.e. the significance, should be less than or equal 
to 0.1. (Since we have a discrete distribution it is impossible to make the significance exactly 0.1.) 

2. We build the rejection region by choosing values of x one at a time, always picking the unused 
value with the smallest probability. We stop when the next value would make the significance more 
that 0.1. 

There are other ways to choose the rejection region which would result in slight differences. Our 
method is one reasonable way. 

Table 2 shows the rejection (orange) and non-rejection (blue) regions for θ = 1.0. This is a special 
case because most of the probabilities in this row are 0.0. We’ll move right on to the next table and 
step through the process for that. 

In Table 3, let’s walk through the steps used to find these regions for θ = 0.9. 

•	 The smallest probability is when x = 0,  so  x = 0 is in the rejection region. 

•	 The next smallest is when x = 1,  so  x = 1 is in the rejection region. 

•	 We continue with x = 2, . . . , 8. At this point the total probability in the rejection region is 
0.026. 

•	 The next smallest probability is when x = 9. Adding this probability (0.09) to 0.026 would 
put the total probability over 0.1. So we leave x = 9 out of the rejection region and stop the 
process. 

Note three things for the θ = 0.9 row:  

1. None of the probabilities in this row are truly zero, though some are small enough that they equal 
0 to 2 decimal places. 

2. We show the significance for this value of θ in the right hand margin. More precisely, we show 
the significance level of the NHST with null hypothesis θ = 0.9 and the given rejection region. 

3. The rejection region consists of values of x. When we say the rejection region is shown in orange 
we really mean the rejection region contains the values of x corresponding to the probabilities 
highlighted in orange. 

Think: Look back at the θ = 1.0 row and make sure you understand why the rejection region is 
x = 0, . . . , 11 and the significance is 0.000. 

Example 2. Using Table 4 determine the 0.90 confidence interval when x = 8.  
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answer: The 90% confidence interval consists of all those θ that would not be rejected by an α = 0.1 
hypothesis test when x = 8. Looking at the table, the blue (non-rejected) entries in the column 
x = 8 correspond to 0.5 ≤ θ ≤ 0.8: the confidence interval is [0.5, 0.8]. 

Remark: The point of this example is to show how confidence intervals and hypothesis tests are 
related. Since Table 4 has only finitely many values of θ, our answer is close but not exact. Using a 
computer we could look at many more values of θ. For this problem we used R to find that, correct 
to 2 decimal places, the confidence interval is [0.42, 0.85]. 

Example 3. Explain why the expected type one CI error rate will be at most 0.092, provided that 
the true value of θ is in the table. 

answer: The short answer is that this is the maximum significance for any θ in Table 4. Expanding 
on that slightly: we make a type one CI error if the confidence interval does not contain the true 
value of θ, call it θtrue. This happens exactly when the data x is in the rejection region for θtrue. 
The probability of this happening is the significance for θtrue and this is at most 0.092. 

Remark: The point of this example is to show how confidence level, type one CI error rate and 
significance for each hypothesis are related. As in the previous example, we can use R to compute 
the significance for many more values of θ. When we do this we find that the maximum significance 
for any θ is 0.1 ocurring when θ ≈ 0.0452. 

Summary notes: 
1. We start with a test statistic x. The confidence interval is random because it depends on x. 

2. For each hypothesized value of θ we make a significance test with significance level α by choosing 
rejection regions. 

3. For a specific value of x the associated confidence interval for θ consists of all θ that aren’t rejected 
for that value, i.e. all θ that have x in their non-rejection regions. 

4. Because the distribution is discrete we can’t always achieve the exact significance level, so our 
confidence interval is really an ‘at least 90% confidence interval’. 

Example 4. Open the applet  . 
 We want you to play with the applet to understand the random nature of confidence intervals  and

 
the

 meaning of confidence as (1 - type I CI error rate). 

(a) Read the help. It is short and will help orient you in the applet. Play with different settings of 
the parameters to see how they affect the size of the confidence intervals. 

(b) Set the number of trials to N = 1. Click the ‘Run N trials’ button repeatedly and see that each 
time data is generated the confidence intervals jump around. 

(c) Now set the confidence level to c = .5. As you click the ‘Run N trials’ button you should see that 
about 50% of the confidence intervals include the true value of μ. The ‘Z correct’ and ‘t correct’ 
values should change accordingly. 

(d) Now set the number of trials to N = 100. With c = .8. The ‘Run N trials’ button will now run 
100 trials at a time. Only the last confidence interval will be shown in the graph, but the trials all 
run and the ‘percent correct’ statistics will be updated based on all 100 trials. 

Click the run trials button repeatedly. Watch the correct rates start to converge to the confidence 
level. To converge even faster, set N = 1000. 

Formal view of confidence intervals 

Recall: An interval statistic is an interval Ix computed from data x. An interval is determined by 
its lower and upper bounds, and these are random because x is random. 

5 

http://ocw.mit.edu/ans7870/18/18.05/s14/applets/confidence-jmo.html

http://ocw.mit.edu/ans7870/18/18.05/s14/applets/confidence-jmo.html
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We suppose that x is drawn from a distribution with pdf f(x|θ) where the parameter θ is unknown. 

Definition: A (1  − α) confidence interval for θ is an interval statistic Ix such that 

P (Ix contains θ0 | θ = θ0) = 1  − α 

for all possible values of θ0. 

We wish this was simpler, but a definition is a definition and this definition is one way to weigh the 
evidence provided by the data x. Let’s unpack it a bit. 

The confidence level of an interval statistic is a probability concerning a random interval and a 
hypothesized value θ0 for the unknown parameter. Precisely, it is the probability that the random 
interval (computed from random data) contains the value θ0, given that the model parameter truly 
is θ0.  Since  the true value  of  θ is unknown, the frequentist statistician defines confidence intervals 
so that this .95 probability is valid no matter which hypothesized value of the parameter is actually 
true. 

Note: Equality in this equation is often relaxed to ≥ or ≈. We  have:  
1. = : z, t, χ2 confidence intervals 
2. ≥ : rule-of-thumb and exact binomial (polling) 
3. ≈ : large sample confidence interval 

Comparison with Bayesian probability intervals 

Confidence intervals are a frequentist notion, and as we’ve repeated many times, frequentists don’t 
assign probabilities to hypotheses, e.g. the value of an unknown parameter. Rather they compute 
likelihoods; that is, probabilities about data or associated statistics given a hypothesis (note the 
condition θ = θ0 in the formal view of confidence intervals). Note that the construction of confidence 
intervals proceeds entirely from the full likelihood table. 

In contrast Bayesian posterior probability intervals are truly the probability that the value of the 
unknown parameter lies in the reported range. We add the usual caveat that this depends on the 
specific choice of a (possibly subjective) Bayesian prior. 

This distinction between the two is subtle because Bayesian posterior probability intervals and 
frequentist confidence intervals share the following properties: 

1. They start from a model f(x|θ) for observed data x with unknown parameter θ. 

2. Given data x, they give an interval  I(x) specifying a range of values for θ. 

3. They come with a number (say .95) that is the probability of something. 

In practice, many people misinterpret confidence intervals as Bayesian probability intervals, forget
ting that frequentists never place probabilities on hypotheses (this is analogous to mistaking the 
p-value in NHST for the probability that H0 is false). The harm of this misinterpretation is some
what mitigated by that fact that, given enough data and a reasonable prior, Bayesian and frequentist 
intervals often work out to be quite similar. 

For an amusing example illustrating how they can be quite different, see the first answer here 
(involving chocolate chip cookies!): 

http://stats.stackexchange.com/questions/2272/whats-the-difference-between-a-confidence-interval-and-a-

This example uses the formal definitions and is really about confidence sets instead of confidence 
intervals. 

credible-interval

http://stats.stackexchange.com/questions/2272/whats-the-difference-between-a-confidence-interval-and-a
http://stats.stackexchange.com/questions/2272/whats-the-difference-between-a-confidence-interval-and-a-credible-interval
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