Variance of Discrete Random Variables Class 5, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

1 Learning Goals

1. Be able to compute the variance and standard deviation of a random variable.

- 2. Understand that standard deviation is a measure of scale or spread.
- 3. Be able to compute variance using the properties of scaling and linearity.

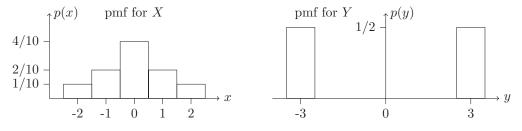
2 Spread

The expected value (mean) of a random variable is a measure of 'location' or 'central tendency'. If you had to summarize a random variable with a single number, the mean would be a good choice. Still, the mean leaves out a good deal of information. For example, the random variables X and Y below both have mean 0, but their probability mass is spread out about the mean quite differently.

values X
 -2
 -1
 0
 1
 2
 values Y
 -3
 3

$$pmf p(x)$$
 $1/10$
 $2/10$
 $4/10$
 $2/10$
 $1/10$
 $pmf p(y)$
 $1/2$
 $1/2$

It's probably a little easier to see the different spreads in plots of the pmf. We use bars instead of dots to give a better sense of the mass.



pmf's for two different distributions both with mean 0

In the next section, we will learn how to quantify this spread.

3 Variance and standard deviation

Taking the mean as the 'center' of a random variable's probability distribution, the *variance* is a measure of how much the probability mass is spread out around this center. We'll start with the formal definition of variance and then unpack its meaning.

Definition: If X is a random variable with mean $E(X) = \mu$, then the variance of X is defined by

$$\operatorname{Var}(X) = E((X - \mu)^2).$$

The standard deviation σ of X is defined by

$$\sigma = \sqrt{\operatorname{Var}(X)}.$$

If the relevant random variable is clear from context, then the variance and standard deviation are often denoted by σ^2 and σ ('sigma'), just as the mean is μ ('mu').

What does this mean? First, let's rewrite the definition explicitly as a sum. If X takes values x_1, x_2, \ldots, x_n with pmf $p(x_i)$ then

$$\operatorname{Var}(X) = E((X - \mu)^2) = \sum_{i=1}^n p(x_i)(x_i - \mu)^2.$$

In words, the formula for Var(X) says to take a weighted average of the squared distance to the mean. By squaring, we make sure we are averaging only non-negative values, so that the spread to the right of the mean won't cancel that to the left. By using expectation, we are weighting high probability values more than low probability values. (See Example 2 below.)

Note on units:

1. σ has the same units as X.

2. Var(X) has the same units as the square of X. So if X is in meters, then Var(X) is in meters squared.

Because σ and X have the same units, the standard deviation is a natural measure of spread.

We'll work some examples to make the notion of variance clear.

Example 1. Compute the mean, variance and standard deviation of the random variable X with the following table of values and probabilities

value
$$x$$
 1
 3
 5

 pmf $p(x)$
 1/4
 1/4
 1/2

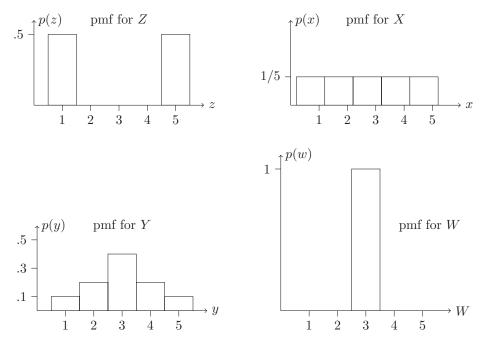
answer: First we compute E(X) = 7/2. Then we extend the table:

So
$$\operatorname{Var}(X) = \frac{25}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{4} + \frac{9}{4} \cdot \frac{1}{2} = \frac{11}{4} \Rightarrow \sigma = \sqrt{11/4}.$$

Example 2. For each random variable X, Y, Z, and W plot the pmf and compute the mean and variance.

- i) value x | 1 2 3 4 5 pmf p(x) | 1/5 1/5 1/5 1/5 1/5 ii) value y | 1 2 3 4 5 pmf p(y) | 1/10 2/10 4/10 2/10 1/10
- pmf $p(z) \mid 5/10 \quad 0 \quad 0 \quad 5/1$ iv) value $w \mid 1 \quad 2 \quad 3 \quad 4 \quad 5$
 - $pmf \, p(w) = 0 \quad 0 \quad 1 \quad 0 \quad 0$

answer: Each random variable has the same mean 3, but the probability is spread out differently. In the plots below, we order the pmf's from largest to smallest variance: Z, X, Y, W.



Next we'll verify our visual intuition by computing the variance of each of the variables. All of them have mean $\mu = 3$. Since the variance is defined as an expected value, we can compute it using the tables.

Var(W) = 0. Note that W doesn't vary, so it has variance 0!

3.1 The variance of a Bernoulli(*p*) random variable.

Bernoulli random variables are fundamental, so we should know their variance. If $X \sim \text{Bernoulli}(p)$ then

$$\operatorname{Var}(X) = p(1-p).$$

Proof: We know that E(X) = p. We compute Var(X) using a table.

As with all things Bernoulli, you should remember this formula.

Think: For what value of p does Bernoulli(p) have the highest variance? Try to answer this by plotting the PMF for various p.

3.2 Properties of Variance

The three most useful properties for computing variance are:

- 1. If X and Y are *independent* then Var(X + Y) = Var(X) + Var(Y).
- 2. For constants a and b, $Var(aX + b) = a^2 Var(X)$.
- 3. $\operatorname{Var}(X) = E(X^2) E(X)^2$.

For Property 1, note carefully the requirement that X and Y are *independent*. We will return to the proof of Property 1 next week.

Property 3 gives a formula for Var(X) that is often easier to use in hand calculations. The computer is happy to use the definition. We'll prove Properties 2 and 3 after some examples.

Example 3. Suppose X and Y are independent and Var(X) = 3 and Var(Y) = 5. Find: (i) Var(X + Y), (ii) Var(3X + 4), (iii) Var(X + X), (iv) Var(X + 3Y).

answer: To compute these variances we make use of Properties 1 and 2.

(i) Since X and Y are *independent*, Var(X + Y) = Var(X) + Var(Y) = 8.

(ii) Using Property 2, $Var(3X + 4) = 9 \cdot Var(X) = 27$.

(iii) Don't be fooled! Property 1 fails since X is certainly not independent of itself. We can use Property 2: $Var(X + X) = Var(2X) = 4 \cdot Var(X) = 12$. (Note: if we mistakenly used Property 1, we would the wrong answer of 6.)

(iv) We use both Properties 1 and 2.

$$Var(X + 3Y) = Var(X) + Var(3Y) = 3 + 9 \cdot 5 = 48.$$

Example 4. Use Property 3 to compute the variance of $X \sim \text{Bernoulli}(p)$.

answer: From the table

$$\begin{array}{c|ccc} X & 0 & 1 \\ \hline p(x) & 1-p & p \\ \hline X^2 & 0 & 1 \end{array}$$

we have $E(X^2) = p$. So Property 3 gives

$$\operatorname{Var}(X) = E(X^2) - E(X)^2 = p - p^2 = p(1-p).$$

This agrees with our earlier calculation.

Example 5. Redo Example 1 using Property 3.

answer: From the table

$$\begin{array}{c|cccc} X & 1 & 3 & 5 \\ \hline p(x) & 1/4 & 1/4 & 1/2 \\ \hline X^2 & 1 & 9 & 2 \\ \end{array}$$

we have E(X) = 7/2 and

$$E(X^2) = 1^2 \cdot \frac{1}{4} + 3^2 \cdot \frac{1}{4} + 5^2 \cdot \frac{1}{2} = \frac{60}{4} = 15.$$

So $Var(X) = 15 - (7/2)^2 = 11/4$ –as before in Example 1.

3.3 Variance of binomial(n,p)

Suppose $X \sim \text{binomial}(n, p)$. Since X is the sum of *independent* Bernoulli(p) variables and each Bernoulli variable has variance p(1-p) we have

$$X \sim \text{binomial}(n, p) \Rightarrow \text{Var}(X) = np(1-p).$$

3.4 Proof of Properties 2 and 3

Proof of Property 2: This follows from the properties of E(X) and some algebra. Let $\mu = E(X)$. Then $E(aX + b) = a\mu + b$ and

$$\operatorname{Var}(aX+b) = E((aX+b-(a\mu+b))^2) = E((aX-a\mu)^2) = E(a^2(X-\mu)^2) = a^2E((X-\mu)^2) = a^2\operatorname{Var}(X).$$

Proof of Property 3: We use the properties of E(X) and a bit of algebra. Remember that μ is a constant and that $E(X) = \mu$.

$$E((X - \mu)^2) = E(X^2 - 2\mu X + \mu^2)$$

= $E(X^2) - 2\mu E(X) + \mu^2$
= $E(X^2) - 2\mu^2 + \mu^2$
= $E(X^2) - \mu^2$
= $E(X^2) - E(X)^2$. QED

Distribution	range X	$\operatorname{pmf} p(x)$	mean $E(X)$	variance $\operatorname{Var}(X)$
Bernoulli(p)	0, 1	p(0) = 1 - p, p(1) = p	p	p(1-p)
Binomial(n, p)	$0, 1, \ldots, n$	$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
Uniform (n)	$1, 2, \ldots, n$	$p(k) = \frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2 - 1}{12}$
Geometric(p)	0, 1, 2,	$p(k) = p(1-p)^k$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$

4 Tables of Distributions and Properties

Let X be a discrete random variable with range x_1, x_2, \ldots and pmf $p(x_j)$.

Expected Value:		Variance:
Synonyms:	mean, average	
Notation:	$E(X), \mu$	$\operatorname{Var}(X), \sigma^2$
Definition:	$E(X) = p(x_j)x_j$	$E((X - \mu)^2) = p(x_j)(x_j - \mu)^2$
Scale and shift:	E(aX+b) = aE(X) + b	$Var(aX+b) = a^2 Var(X)$
Linearity:	(for any X, Y)	(for X, Y independent)
	E(X+Y) = E(X) + E(Y)	$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$
Functions of X :	$E(h(X)) = \sum p(x_j) h(x_j)$	
Alternative formula:		$Var(X) = E(X^2) - E(X)^2 = E(X^2) - \mu^2$

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.