Studio 2
 18.05 Spring 2014
 Jeremy Orloff and Jonathan Bloom

Expected Value

If X is a random variable the takes values $x_{1}, x_{2}, \ldots, x_{n}$ then the expected value of X is defined by

$$
E(X)=p\left(x_{1}\right) x_{1}+p\left(x_{2}\right) x_{2}+\ldots+p\left(x_{n}\right) x_{n}=\sum_{i=1}^{n} p\left(x_{i}\right) x_{i}
$$

- Weighted average
- Measure of central tendency

Properties of $E(X)$

1. $E(X+Y)=E(X)+E(Y)$
2. $E(a X+b)=a E(X)+b$
3. $E(h(X))=\sum_{i} h\left(x_{i}\right) p\left(x_{i}\right)$

Examples

Example 1. Find $E(X)$

1.	$X:$	3	4	5	6
2.	$\mathrm{pmf}:$	$1 / 4$	$1 / 2$	$1 / 8$	$1 / 8$
3.	$E(X)=3 / 4+4 / 2+5 / 8+6 / 8=33 / 8$				

Example 2. Suppose $X \sim \operatorname{Bernoulli}(p)$. Find $E(X)$.

1.	$X:$	0	1
2.	pmf:	$1-p$	p
3.	$E(X)=(1-p) \cdot 0+p \cdot 1=p$.		

Example 3. Suppose $X \sim \operatorname{Binomial}(12, .25)$. Find $E(X)$. $X=X_{1}+X_{2}+\ldots+X_{12}$, where $X_{i} \sim$ Bernoulli(.25). Therefore

$$
E(X)=E\left(X_{1}\right)+E\left(X_{2}\right)+\ldots E\left(X_{12}\right)=12 \cdot(.25)=3
$$

In general if $X \sim \operatorname{Binomial}(n, p)$ then $E(X)=n p$.

Board Question

Suppose (hypothetically!) that everyone at your table gets up, does a board question, and sits back down at random (i.e., all seating arrangements are equally likely).
What is the expected number of people who return to their original seat?

R Exercises

Suppose $Y \sim \operatorname{Binomial}(8,6)$.

1. Run a simulation with 1000 trials to estimate $P(Y=6)$ and $P(Y<=6)$
2. Use R and the formula for binomial probabilities to compute $P(Y=6)$ exactly.

R Exercises

3. A friend has a coin with probability .6 of heads. She proposes the following gambling game.

- You will toss it 10 times and count the number of heads.
- The amount you win or lose on k heads is given by $k^{2}-7 k$
(a) Plot the payoff function.
(b) Make an exact computation using R to decide if this is a good bet.
(c) Run a simulation and see that it approximates your computation in part (b).

MIT OpenCourseWare
http://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

