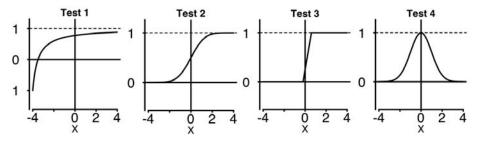

Studio 3 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom

Concept questions

Suppose X is a continuous random variable.

- a) What is $P(a \le X \le a)$?
- b) What is P(X = 0)?

c) Does P(X = 2) = 0 mean X never equals 2?


answer: a) 0

b) 0

c) No. For a continuous distribution any single value has probability 0. Only a range of values has non-zero probability.

Concept question

Which of the following are graphs of valid cumulative distribution functions?

Add the numbers of the valid cdf's and click that number. **answer:** Test 2 and Test 3. Test 1 is not a cdf: it takes negative values, but probabilities are positive. Test 2 is a cdf: it increases from 0 to 1.

Test 3 is a cdf: it increases from 0 to 1.

Test 4 is not a cdf: it decreases. A cdf must be non-decreasing since it represents *accumulated* probability.

Exponential Random Variables

λ (called the rate parameter).
$[0,\infty).$
exponential(λ) or exp(λ).
$f(x) = \lambda \mathrm{e}^{-\lambda x}$ for $0 \leq x$.
Waiting time
< 7)
$F(x) = 1 - e^{-x/10}$ $1 \xrightarrow{x} 2 4 6 8 10 12 14 16 x$

Continuous analogue of geometric distribution -memoryless!

Uniform and Normal Random Variables

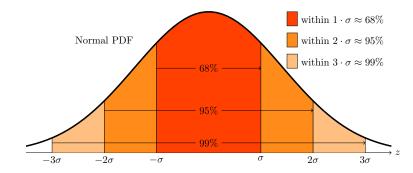
Uniform: U(a, b) or uniform(a, b)Range: [a, b]PDF: $f(x) = \frac{1}{b-a}$ **Normal:** $N(\mu, \sigma^2)$ Range: $(-\infty, \infty]$

Range: $(-\infty, \infty]$ PDF: $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$

http://ocw.mit.edu/ans7870/18/18.05/s14/applets/probDistrib.html

Table questions

Open the applet


http://ocw.mit.edu/ans7870/18/18.05/s14/applets/probDistrib.html

1. For the **standard normal** distribution N(0, 1) how much probability is within 1 of the mean? Within 2? Within 3?

2. For N(0, 3²) how much probability is within σ of the mean? Within 2σ ? Within 3σ .

3. Does changing μ change your answer to problem 2?

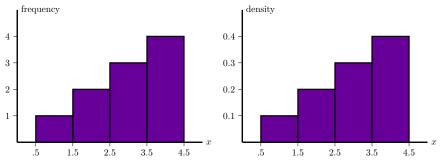
Normal probabilities

Rules of thumb:

$$P(-1 \le Z \le 1) \approx .68,$$

 $P(-2 \le Z \le 2) \approx .95,$
 $P(-3 \le Z \le 3) \approx .997$

Download studio3.zip and unzip it into your 18.05 working directory. Open studio3.r in RStudio.


Histograms

Will discuss in more detail in class 6.

Made by 'binning' data.

Frequency: height of bar over bin = # of data points in bin.

Density: area of bar over bin is proportional to # of data points in bin. Total area of a density histogram is 1.

Histograms of averages of exp(1)

1. Generate a frequency histogram of 1000 samples from an exp(1) random variable.

2. Generate a density histogram for the average of 2 independent $\exp(1)$ random variable.

3. Using rexp(), matrix() and colMeans() generate a density histogram for the average of 50 independent exp(1) random variables. Make 10000 sample averages and use a binwidth of .1 for this. Look at the spread of the histogram.

4. Superimpose a graph of the pdf of N(1,1/50) on your plot in problem 3. (Remember the second parameter in N is σ^2 .)

Code for the solutions is at

http://ocw.mit.edu/ans7870/18/18.05/s14/r-code/studio3-sol.r

MIT OpenCourseWare http://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.