
18.06 Linear Algebra, Fall 1999 
Transcript – Lecture 11 

OK. This is linear algebra lecture eleven. And at the end of lecture ten, I was talking 
about some vector spaces, but they're -- the things in those vector spaces were not 
what we usually call vectors. Nevertheless, you could add them and you could 
multiply by numbers, so we can call them vectors. I think the example I was working 
with they were matrices. So the -- so we had like a matrix space, the space of all 
three by three matrices. And I'd like to just pick up on that, because -- we've been 
so specific about n dimensional space here, and you really want to see that the same 
ideas work as long as you can add and multiply by scalars. So these new, new vector 
spaces, the example I took was the space M of all three by three matrices. 

OK. I can add them, I can multiply by scalars. I can multiply two of them together, 
but I don't do that. That's not part of the vector space picture. The vector space part 
is just adding the matrices and multiplying by numbers. And that's fine, we stay 
within this space of three by three matrices. And I had some subspaces that were 
interesting, like the symmetric, the subspace of symmetric matrices, symmetric 
three by threes. Or the subspace of upper triangular three by threes. Now I, I use 
the word subspace because it follows the rule. If I add two symmetric matrices, I'm 
still symmetric. If I multiply two symmetric matrices, is the product automatically 
symmetric? No. But I'm not multiplying matrices. I'm just adding. So I'm fine. This is 
a subspace. 

Similarly, if I add two upper triangular matrices, I'm still upper triangular. And, that's 
a subspace. 

Now I just want to take these as example and ask, well, what's a basis for that 
subspace? What's the dimension of that subspace? And what's bd- dimension of the 
whole space? So, there's a natural basis for all three by three matrices, and why 
don't we just write it down. 

So, so M, a basis for M. Again, all three by threes. 

OK. And then I'll just count how many members are in that basis and I'll know the 
dimension. 

And OK, it's going to take me a little time. 

In fact, what is the dimension? Any idea of what I'm coming up with next? How 
many numbers does it take to specify that three by three matrix? Nine. Nine is the, 
is the dimension I'm going to find. 

And the most obvious basis would be the matrix that's that matrix and then this 
matrix with a one there and that's two of them, shall I put in the third one, and then 
onwards, and the last one maybe would end with the one. 

OK. That's like the standard basis. 



In fact, our space is practically the same as nine dimensional space. It's just the nine 
numbers are written in a square instead of in a column. 

But somehow it's different and, and ought to be thought of as -- natural for itself. 
Because now what about the symmetric three by threes? So that's a subspace. 

Just let's just think, what's the dimension of that subspace and what's a basis for 
that subspace. 

OK. And I guess this question occurs to me. If I look at this subspace of symmetric 
three by threes, well, how many of these original basis members belong to the 
subspace? I think only three of them do. This one is symmetric. 

This last one is symmetric. And the one in the middle with a, with a one in that 
position -- in the two two position, would be symmetric. But so I've got three of 
these original nine are symmetric, but, so this is an example where -- but that's, 
that's not all, right? What's the dimension? Let's put the dimensions down. 

Dimension of the, of M, was nine. 

What's the dimension of -- shall we call this S -- is what? What's the dimension of 
this? I'm sort of taking simple examples where we can, we can, spot the answer to 
these questions. So how many -- if I have a symmetric -- think of all symmetric 
matrices as a subspace, how many parameters do I choose in three by three 
symmetric matrices? Six, right. If I choose the diagonal that's three, and the three 
entries above the diagonal, then I know what the three entries below. 

So the dimension is six. I guess what's the dimension of this here? Let's call this 
space U for upper triangular. So what's the dimension of that space of all upper 
triangular three by threes? Again six. Again six. 

And, but we haven't got a -- we haven't seen -- well, actually, maybe we have got a 
basis here for, the upper triangulars. I guess six of these guys, one, two, three, four, 
and a, and a couple more, would be upper triangular. So there's a accidental case 
where the big basis contains in it a basis for the subspace. But with the symmetric 
guy, it didn't have. The symmetric guy the, basis -- so you see -- a basis is the basis 
for the big space, we generally need to think it all over again to get a basis for the 
subspace. And then how do I get other subspaces? Well, we spoke before about, the 
subspace the symmetric matrices and the upper triangular. This is symmetric and 
upper triangular. OK. 

What's the, what's the dimension of that space? Well, what's in that space? So 
what's -- if a matrix is symmetric and also upper triangular, that makes it diagonal. 
So this is the same as the diagonal matrices, diagonal three by threes. 

And the dimension of this, of S intersect U, right -- you're OK with that symbol? 
That's, that's the vectors that are in both S and U, and that's D. So S intersect U is 
the diagonals. And the dimension of the diagonal matrices is three. And we've got a 
basis, no problem. OK, as I write that, I think, OK, what about putting -- so this is 
like, this intersection -- is taking all the vectors that are in both, that are symmetric 
and also upper triangular. 



Now we looked at the union. Suppose I take the matrices that are symmetric or 
upper triangular. 

What -- why was that no good? So why is it no -- why I not interested in the union, 
putting together those two subspaces? So this, these are matrices that are in S or in 
U, or possibly both, so they, the diagonals included. 

But what's bad about this? It's not a subspace. 

It's like having, taking, you know, a couple of lines in the plane and stopping there. 

A line -- this is -- so there's a three dimensional subspace of a nine dimensional 
space, there's -- ooh, sorry, six. There's a six dimensional subspace of a nine 
dimensional space. There's another one. But they, they're headed in different 
directions, so we, we can't just put them together. We have to fill in. 

So that's what we do. To get this bigger space that I'll write with a plus sign, this is 
combinations of things in S and things in U. OK. 

So that's the final space I'm going to introduce. 

I have a couple of subspaces. I can take their intersection. 

And now I'm interested in not their union but their sum. 

So this would be the, this is the intersection, and this will be their sum. So what do I 
need for a subspace here? I take anything in S plus anything in U. I don't just take 
things that are in S and pop in also, separately, things that are in U. This is the sum 
of any element of S, that is, any symmetric matrix, plus any in U, any element of U. 

OK. Now as long as we've got an example here, tell me what we get. 

If I take every symmetric matrix, take all symmetric matrices, and add them to all 
upper triangular matrices, then I've got a whole lot of matrices and it is a subspace. 

And what's -- it's a vector space, and what vector space would I then have? Any idea 
what, what matrices can I get out of a symmetric plus an upper triangular? I can get 
anything. I get all matrices. 

I get all three by threes. It's worth thinking about that. 

It's just like stretch your mind a little, just a little, to, to think of these subspaces 
and what their intersection is and what their sum is. 

And now can I give you a little -- oh, well, let's figure out the dimension. So what's 
the dimension of S plus U? In this example is nine, because we got all three by 
threes. 

So the original spaces had, the original symmetric space had dimension six and the 
original upper triangular space had dimension six. And actually I'm seeing here a 
nice formula. That the dimension of S plus the dimension of U -- if I have two 
subspaces, the dimension of one plus the dimension of the other -- equals the 
dimension of their intersection plus the dimension of their sum. Six plus six is three 



plus nine. That's kind of satisfying, that these natural operations -- and we've -- this 
is it, actually, this is the set of natural things to do with, with subspaces. That, the 
dimensions come out in a good way. OK. 

Maybe I'll take just one more example of a vector space that doesn't have vectors in 
it. It's come from differential equations. So this is a one more new vector space that 
we'll give just a few minutes to. Suppose I have a differential equation like 
d^2y/dx^2+ y=0. 

OK. I look at the solutions to that equation. So what are the solutions to that 
equation? y=cos(x) is a solution. 

y=sin(x) is a solution. y equals -- well, e to the (ix) is a solution, if you want, if you 
allow me to put that in. But why should I put that in? It's already there. You see, I'm 
really looking at a null space here. I'm looking at the null space of a differential 
equation. That's the solution space. 

And describe the solution space, all solutions to this differential equation. So the 
equation is y''+y=0. 

Cosine's, cosine's a solution, sine is a solution. 

Now tell me all the solutions. They're -- so I don't need e^(ix). Forget that. 

What are all the complete solutions? Is what? A combination of these. The complete 
solution is y equals some multiple of the cosine plus some multiple of the sine. 

That's a vector space. That's a vector space. 

What's the dimension of that space? What's a basis for that space? OK, let me ask 
you a basis first. If I take the set of solutions to that second order differential 
equation -- there it is, those are the solutions. 

What's a basis for that space? Now remember, what's the, what question I asking? 
Because if you know the question I'm asking, you'll see the answer. A basis means 
all the guys in the space are combinations of these basis vectors. 

Well, this is a basis. sin x, cos x there is a basis. 

Those two -- they're like the special solutions, right? We had special solutions to 
Ax=b. Now we've got special solutions to differential equations. Sorry, we had 
special solutions to Ax=0, I misspoke. The special solutions were for the null space 
just as here we're talking about the null space. Do you see that here is a -- those 
two -- and what's the dimension of the solution space? How many vectors in this 
basis? Two, the sine and cosine. 

Are those the only basis for this space? By no means. e^(ix) and e^(-ix) would be 
another basis. Lots of bases. 

But do you see that really what a course in differential -- in linear differential 
equations is about is finding a basis for the solution space. The dimension of the 
solution space will always be -- will be two, because we have a second order 



equation. So that's, like there's 18.03 in -- five minutes of 18.06 is enough to, to 
take care of 18.03. OK. 

So there's a -- that's one more example. And of course the point of the example is 
these things don't look like vectors. They look like functions. 

But we can call them vectors, because we can add them and we can multiply by 
constants, so we can take linear combinations. That's all we have to be allowed to 
do. So that's really why this idea of linear algebra and basis and dimension and so on 
plays a wider role than -- our constant discussions of m by n matrices. OK. 

That's what I wanted to say about that topic. 

Now of course the key, number associated with matrices, to go back to that number, 
is the rank. 

And the rank, what do we know about the rank? Well, we know it's not bigger than 
m and it's not bigger than n. So but I'd like to have a little discussion on the rank. 
Maybe I'll put that here. 

So I'm picking up this topic of rank one matrices. 

And the reason I'm interested in rank one matrices is that they ought to be simple. If 
the rank is only one, the matrix can't get away from us. 

So for example, let me take -- let me create a rank one matrix. OK. 

Suppose it's three -- suppose it's two by three. And let me give you the first row. 

What can the second row be? Tell me a possible second row here, for, for this matrix 
to have rank one. 

A possible second row is? Two eight ten. 

The second row is a multiple of the first row. 

It's not independent. So tell me a basis for the -- oh yeah, sorry to keep bringing up 
these same questions. 

After the quiz I'll stop, but for now, tell me a basis for the row space. 

A basis for the row space of that matrix is the first row, right? The first row, one four 
five. A basis for the column space of this matrix is? What's the dimension of the 
column space? The dimension of the column space is also one, right? Because it's 
also the rank. The dimension -- you remember the dimension of the column space 
equals the rank equals the dimension of the column space of the transpose, which is 
the row space of A. OK, and in this case it's one, r is one. And sure enough, all the 
columns are -- all the other columns are multiples of that column. Now there's --
there ought to be a nice way to see that, and here it is. 

I can write that matrix as its pivot column, one two, times its -- times one four five. 
A column times a row, one column times one row gives me a matrix, right? If I 



multiply a column by a row, that, g- that's a two by one matrix times a one by three 
matrix, and the result of the multiplication is two by three. 

And it comes out right. So what I want to -- my point is the rank one matrices that 
every rank one matrix has the form some column times some row. So U is a column 
vector, V is a column vector -- but I make it into a row by putting in V transpose. So 
that's the -- complete picture of rank one matrices. We'll be interested in rank one 
matrices. Later we'll find, oh, their determinant, that'll be easy, their eigenvalues, 
that'll be interesting. 

Rank one matrices are like the building blocks for all matrices. And actually maybe 
you can guess. If I took any matrix, a five by seventeen matrix of rank four, then it 
seems pretty likely -- and it's true, that I could break that five by seventeen matrix 
down as a combination of rank one matrices. 

And probably how many of those would I need? If I have a five by seventeen matrix 
of rank four, I'll need four of them, right. 

Four rank one matrices. So the rank one matrices are the, are the building blocks. 
And out -- I can produce every, I can produce every five by -- every rank four matrix 
out of four rank one matrices. OK. 

That brings me to a question, of course. 

Would the rank four matrices form a subspace? Let me take all five by seventeen 
matrices and think about rank four -- the subset of rank four matrices. 

Let me -- I'll write this down. You seem I'm reviewing for the quiz, because I'm 
asking the kind of questions that are short enough but -- that bring out do you know 
what these words mean. So I take -- my matrix space M now is all five by seventeen 
matrices. 

And now the question I ask is the subset of, of rank four matrices, is that a 
subspace? If I add a matrix of -- so if I multiply a matrix of rank four by -- of rank 
four or less, let's say, because I have to let the zero matrix in if it's going to be a 
subspace. But, but that doesn't just because the zero matrix got in there doesn't 
mean I have a subspace. So if I -- so the, the question really comes down to -- if I 
add two rank four matrices, is the sum rank four? What do you think? If -- no, not 
usually. 

Not usually. If I add two rank four matrices, the sum is probably -- what could I say 
about the sum? Well, actually, well, the rank could be five. 

It's a general fact, actually, that the rank of A plus B can't be more than rank of A 
plus the rank of B. 

So this would say if I added two of those, the rank couldn't be larger than eight, but 
I know actually the rank couldn't be as large as eight anyway. 

What -- how big could the rank be, for, for the rank of a matrix in M? Could be as 
large as five, right, right. So they're all sort of natural ideas. So it's rank four 
matrices or rank one matrices -- let me, let me change that to rank one. 



Let me take the subset of rank one matrices. Is that a vector space? If I add a rank
 
one matrix to a rank one matrix? No.
 

It's most likely going to have rank two.
 

So this is -- So I'll just make that point.
 

Not a subspace. OK.
 

OK. Those are topics that I wanted to, just fill out the, the previous lectures.
 

The I'll ask one more subspace question, a, a more, a more, likely example. Suppose
 
I'm in -- let me put, put this example on a new board.
 

Suppose I'm in R, in R^4.
 

So my typical vector in R^4 has four components, v1, v2, v3, and v4. Suppose I
 
take the subspace of vectors whose components add to zero.
 

So I let S be all v, all vectors v in four dimensional space with v1+v2+v3+v4=0.
 

So I just want to consider that bunch of vectors.
 

Is it a subspace, first of all? It is a subspace. It is a subspace.
 

What's -- how do we see that? It is a subspace.
 

I -- formally I should check. If I have one vector that with whose components add to
 
zero and I multiply that vector by six -- the components still add to zero, just six 
times as -- six times zero. If I have a couple of v and a w and I add them, the, the 
components still add to zero. OK, it's a subspace. 

What's the dimension of that space and what's a basis for that space? So you see 
how I can just describe a space and we -- we can ask for the dimension -- ask for 
the basis first and the dimension. 

Of course, the dimension's the one that's easy to tell me in a single word. What's the 
dimension of our subspace S here? And a basis tell me -- some vectors in it. Well, 
I'm going to make ask you again to guess the dimension. Again I think I heard it. 
Three. The dimension is three. 

Now how does this connect to our Ax=0? Is this the null space of something? Is that 
the null space of a matrix? And then we can look at the matrix and, and we know 
everything about those subspaces. 

This is the null space of what matrix? What's the matrix where the null space is then 
Ab=0.
 

So I want this equation to be Ab=0. b is now the vector. And what's the matrix that,
 
that we're seeing there? It's the matrix of four ones.
 

Do you see that that's -- that if I look at Ab=0 for this matrix A, I multiply by b and I 
get this requirement, that the components add to zero. 



So I'm really when I speak about S -- I'm speaking about the null space of that 
matrix. 

OK. Let's just say we've got a matrix now, we want its null space. 

Well, we -- tell me its rank first. 

The rank of that matrix is one, thanks. 

So r is one. What's the general formula for the dimension of the null space? The 
dimension of the null space of a matrix is -- in general, an m by n matrix of rank r? 
How many independent guys in the null space? n-r, right? n-r. 

In this case, n is four, four columns. 

The rank is one, so the null space is three dimensions. So of course y- you could see 
it in this case, but you can also see it here in our systematic way of dealing with the 
four fundamental subspaces of a matrix. So what actually what, what are all four 
subspaces then? The row space is clear. The row space is in R^4. 

Yeah, can we take the four fundamental subspaces of this matrix? Let's just kill this 
example. 

The row space is one dimensional. 

It's all multiples of that, of that row. 

The null space is three dimensional. 

Oh, you better give me a basis for the null space. 

So what's a basis for the null space? The special solutions. To find the special 
solutions, I look for the free variables. The free variables here are -- there's the 
pivot. The free variables are two, three, and four. So the basis, basis for S, for S will 
be -- I'm expecting three vectors, three special solutions. 

I give the value one to that free variable, and what's the pivot variable if the -- this 
is going to be a vector in S? Minus one. Now they're always added to -- the entries 
add to zero. The second special solution has a one in the second free variable, and 
again a minus one makes it right. The third one has a one in the third free variable, 
and again a minus one makes it right. That's my answer. 

That's the answer I would be looking for. The -- a basis for this subspace S, you 
would just list three vectors, and those would be the natural three to list. Not the 
only possible three, but those are the special three. OK, tell me about the column 
space, What's the column space of this matrix A? So the column space is a subspace 
of R^1, because m is only one. 

The columns only have one component. 

So the column space of S, the column space of A is somewhere in the space R^1, 
because we only have -- these columns are short. And what is the column space 



actually? I just, it's just talking with these words is what I'm doing. The column
 
space for that matrix is R^1. The column space for that matrix is all multiples of that
 
column.
 

And all multiples give you all of R^1.
 

And what's the, the remaining fourth space, the null space of A transpose is what?
 
So we transpose A. We look for combinations of the columns now that give zero for A
 
transpose.
 

And there aren't any. The only thing, the only combination of these rows to give the
 
zero row is the zero combination. OK.
 

So let's just check dimensions. The null space has dimension three. The row space
 
has dimension one. Three plus one is four.
 

The column space has dimension one, and what's the dimension of this, like,
 
smallest possible space? What's the dimension of the zero space? It's a subspace.
 
Zero.
 

What else could it be? I mean, let's -- we have to take a reasonable answer -- and
 
the only reasonable answer is zero. So one plus zero gives -- this was n, the number
 
of columns, and this is m, the number of rows. And let's just, let me just say again
 
then the, the, the subspace that has only that one point, that point is zero
 
dimensional, of course. And the basis is empty, because if the dimension is zero,
 
there shouldn't be anybody in the basis. So the basis of that smallest subspace is the
 
empty set. And the number of members in the empty set is zero, so that's the
 
dimension.
 

OK. Good.
 

Now I have just five minutes to tell you about -- well, actually, about some, some,
 
some, this is now, this last topic of small world graphs, and leads into, a lecture
 
about graphs and linear algebra.
 

But let me tell you -- in these last minutes the graph that I interested in. It's the
 
graph where -- so what is a graph? Better tell you that first.
 

OK. What's a graph? OK. This isn't calculus.
 

We're not, I'm not thinking of, like, some sine curve. The word graph is used in a
 
completely different way.
 

It's a set of, a bunch of nodes and edges, edges connecting the nodes. So I have
 
nodes like five nodes and edges -- I'll put in some edges, I could put, include them
 
all. There's -- well, let me put in a couple more. There's a graph with five nodes and
 
one two three four five six edges.
 

And some five by six matrix is going to tell us everything about that graph. Let me
 
leave that matrix to next time and tell you about the question I'm interested in.
 

Suppose, suppose the graph isn't just, just doesn't have just five nodes, but suppose
 
every, suppose every person in this room is a node.
 



And suppose there's an edge between two nodes if those two people are friends. So 
have I described a graph? It's a pretty big graph, hundred, hundred nodes. 

And I don't know how many edges are in there. There's an edge if you're friends. 

So that's the graph for this class. 

A, a similar graph you could take for the whole country, so two hundred and sixty 
million nodes. 

And edges between friends. And the question for that graph is how many steps does 
it take to get from anybody to anybody? What two people are furthest apart in this 
friendship graph, say for the US? By furthest apart, I mean the distance from -- well, 
I'll tell you my distance to Clinton. It's two. 

I happened to go to college with somebody who knows Clinton. 

I don't know him. So my distance to Clinton is not one, because I don't, happily or 
not, don't know him. But I know somebody who does. 

He's a Senator and so I presume he knows him. 

OK. I don't know what your -- well, what's your distance to Clinton? Well, not more 
than three, right. 

Actually, true. You know me. 

I take credit for reducing your Clinton distance to three -- what's your distance to 
Monica. Not, anybody below -- below four is in trouble here. Or maybe three, but, 
right. So -- and what's Hillary's distance to Monica? I don't think we'd better put that 
on tape here. That's one or two, I guess. Is that right? I don't -- well, we won't, 
think more about that. So actually, the, the real question is what are large 
distances? How, how far apart could people be separated? And roughly this number 
six degrees of separation has kind of appeared as the movie title, as the book title, 
and it's with this meaning. That roughly speaking -- six might be a fairly -- not too 
many people. 

If you sit next to somebody on an airplane, you get talking to them. You begin to 
discuss mutual friends to sort of find out, OK, what connections do you have, and 
very often you'll find you're connected in, like, two or three or four steps. 

And you remark, it's a small world, and that's how this expression small world came 
up. 

But six, I don't know if you could find -- if it took six, I don't know if you would 
successfully discover those six in a, in an airplane conversation. 

But here's the math question, and I'll leave it for next, for lecture twelve, and do a 
lot of linear algebra in lecture twelve. But the interesting point is that with a few 
shortcuts, the distances come down dramatically. That, I mean, all your distances to 
Clinton immediately drop to three by taking linear algebra. That's, like, an extra 
bonus for taking linear algebra. 



And to understand mathematically what it is about these graphs -- or like the graphs 
of the World Wide Web. There's a fantastic graph. 

So many people would like to understand and model the web. 

What the -- where the edges are links and the nodes are, sites, websites. I'll leave 
you with that graph, and I'll see you -- have a good weekend, and see you on 
Monday. 
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