DAVID SHIROKOFF: Hi everyone. Welcome back.

So today I'd like to tackle a problem on pseudoinverses. So given a matrix A, which is not square, so it's just 1 and 2. First, what is its pseudoinverse? So A plus I'm using to denote the pseudoinverse. Then secondly, compute A plus A and A A plus. And then thirdly, if x is in the null space of A, what is A plus A acting on x ? And lastly, if x is in the column space of A transpose, what is A plus $A x$?

So I'll let you think about this problem for a bit, and I'll be back in a second.

Hi everyone. Welcome back. OK, so let's take a look at this problem. Now first off, what is a pseudoinverse? Well we define the pseudoinverse using the SVD. So in actuality, this is nothing new. Now, we note that because A is not square, the regular inverse of A doesn't necessarily exist. However, we do know that the SVD exists for every matrix A whether it's square or not.

So how do we compute the SVD of a matrix? Well let's just recall that the SVD of a matrix has the form of u sigma V transpose where u and V are orthogonal matrices. And sigma is a matrix with positive values along the diagonal or 0 s along the diagonal. And let's just take a look at the dimensions of these matrices for a second. So we know that A is a 1 by 2 matrix.

And the way to figure out what the dimensions of these matrices are I usually always start with the center matrix, sigma, and sigma is always going to have the same dimensions as A, so it's going to be a 1 by 2 matrix. u and V are always square matrices. So to make this multiplication work out, we need V to have 2 , and because it's square it has to be 2 by 2 . And likewise, u has to be 1 by 1 .

So we now have the dimensions of u sigma and V. And note, because u is a 1 by 1 matrix, the only orthogonal 1 by 1 matrix is just 1 . So u we already know is just going to be the matrix, the identity matrix, which is a 1 by 1 matrix.

OK, now how do we compute V and sigma? Well we can take A transpose and A, and if we do that we end up getting the matrix V sigma transpose sigma, V transpose. And this matrix is going to be a square matrix where the diagonal elements are squares of the singular values. So computing V and the values along sigma, just boil down to diagonalizing A transpose A.

So what is A transpose A? Well in our case is 12 times 12 , which gives us 12,24 . And note that the second row is just a constant multiple times the first row.

Now what this means is we have a zero eigenvalue. So we already know that lambda 1 is going to be 0. So one of the eigenvalues of this matrix is 0 . And of course, when we square root it, this is going to give us a singular value sigma, which is also 0 . And this is generally a case when we have a sigma which is not square. We typically always have 0 singular values.

Now to compute the second eigenvalue, well we already know how to compute the eigenvalues of a matrix, so I'm just going to tell you what it is. The second one is lambda is 5 . And if we just take a quick look what the corresponding eigenvector is going to be to lambda is 5 , it's going to satisfy this equation. So we can take the eigenvector u to be 1 and 2 .

However, remember that when we compute the eigenvector for this orthogonal matrix V, they always have to have a unit length. And this vector right now doesn't have a unit length. We have to divide by the length of this vector, which in our case is 1 over root 5 . And if I go back to the lambda equals 0 case, we also have another eigenvector, which I'll just state. You can actually compute it quite quickly just by noting that it has to be orthogonal to this eigenvector, 2 and 1.

So what this means is A has a singular value decomposition, which looks like 1 , so this is u, times sigma, which is going to be root 50 . Remember that the first sigma is actually the square root of the eigenvalue. Times a matrix which looks like, now we have to order the eigenvalues up in the correct order. Because 5 appears in the first column, we have to take this vector to be in the first column as well. So this is 1 over root 5 , this is 2 over root 5 , negative 2 over root 5 , and 1 over root 5 . And now this is V , but the singular value decomposition is defined by V transpose.

So this gives us a representation for A. And now once we have the SVD of A, how do we actually compute A plus, or the pseudoinverse of A ? Well just note if A was invertible, then the inverse of A in
terms of the SVD would be V transpose times the inverse of sigma. Sorry, this is not V transpose, this is just V. So it'd be V sigma inverse u transpose. And when A is invertible, sigma inverse exists.

So in our case, sigma inverse doesn't necessarily exist because sigma, note this is sigma, sigma is root 5 and 0 . So we have to construct a pseudoinverse for sigma. So the way that we do that is we take 1 over each singular value, and we take the transpose of sigma. So when A is not invertible, we can still construct a pseudoinverse by taking V sigma and approximation for sigma inverse, which in our case is going to be 1 over the singular value and 0 . So note where sigma is invertible, we take the inverse, and then we fill in 0 s in the other areas, times u transpose.

And we can work this out. We get 1 over root 5, 1 minus 2,21 , 1 over root 5,0 . And if I multiply things out, I get $1 / 5,12$. So this is an approximation for A inverse, which is the pseudoinverse.

So this finishes up part one. And I'll started on part two in a second.

So now that we've just computed the pseudoinverse of A. We're going to investigate some properties of the pseudoinverse. So for part two we need to compute A times A plus and A plus times A. So we can just go ahead and do this. So A A plus you can do fairly quickly. 1/5, 12 . And when we multiply it out we get 1 plus 4 divided by 5 is 1 . So we just get the one by one matrix, which is 1 , the identity matrix.

And secondly, if we take A plus times A we're going to get $1 / 5,12$ times 12 . And we can just fill in this matrix. This is $1 / 5,12,21$. And this concludes part two.

So now let's take a look at what happens when a vector x is in the null space of A, and then secondly, what happens when x is in the column space of A transpose.

So for part three, let's assume x is in the null space of A. Well what's the null space of A ? We can quickly check that the null space of A is a constant times any vector minus 21.

So that's the null space. So if x is, for example, i.e. if we take x is equal to minus 2 1, and we were to, say, multiply it by A plus A, acting on x we see that we get 0 . And this isn't very surprising because, well if x is
in the null space of A, we know that A acting on x is going to be 0 . So that no matter what matrix A plus is, when we multiply by 0 , we'll always end up with 0 .

And then lastly, let's take a look at the column space of A transpose. Well A transpose is 12 , so it's any constant times the vector 12 . And specifically, if we were to take, say, x is equal to 12 , we can work at A plus A acting on the vector 12 . So we have $1 / 5,12,21$. So recall this is A plus A. And if we multiply it on the vector 12 , we get 1 plus 4 is 5 divided by 5 , so we get 1.2 plus 2 is $4--$ sorry, I copied the matrix down. So it's 2 plus 8 , which is 10 divided by 5 is 2 . And we see that at the end we recover the vector x.

So in general, if we take A plus A acting on x, where x is in the column space of A transpose, we always recover x at the end of the day. So intuitively, what does this matrix A plus A do? Well if x is in the null space of A, it just kills it. We just get 0 . If x is not in the null space of A, then we just get x back. So it's essentially the identity matrix acting on x whenever x is in the column space of A transpose.

Now specifically, if A is invertible, then A doesn't have a null space. So what that means is when A is invertible, A plus A recovers the identity because when we multiply it on any vector, we get that vector back.

So I'd like to conclude here, and I'll see you next time.

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

