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PROFESSOR: Hi, everyone. Today, we're going to talk about linear transformations. So, we've seen linear 
transformations incognito all the time until now. We've played around with matrices. Matrices 
multiplying vectors, say, in Rn and producing vectors in Rm.  

 

So really, the language of linear transformations only provides a nicer framework when we want to 
analyze linear operations on more abstract vector spaces, like the one we have in this problem here. 
We're going to work with the space of two by two matrices. And we're going to analyze the operation, 
have the matrix A, and we produce its transpose. OK. So please take a few minutes to try the problem 
on your own and come back.  

 

Hi, again. OK. So the first question we need to ask ourselves is, indeed, why is T a linear operator? So 
what are the abstract properties that a linear operator satisfies? Well, what happens when T acts on the 
sum of two matrices, A and B?  

 

So we've produced-- this is the matrix. The transpose of A plus B. But we know that this is A transpose, B 
transpose. And so, this is exactly T of A plus T of B. So the transformation that we're analyzing takes the 
sum of two matrices into the sum of their transformations. OK. Similarly, it takes a multiple of a 
transformation into the multiple of the transformations. So it takes the matrix C times A to C times A 
transpose, which is C T of A.  

 

OK. So it is a linear operator. Now, can we figure out what its inverse is? Well, what does the transpose 
do? It takes a column and flips it into a row. So what happens if we apply the operation once again? 
Well, it's going to take the row and turn it back down to the column.  

 

So applying the transformation twice, we come back to the original situation. So therefore, t squared is 
the identity. And from this, we infer that the inverse is the transformation itself.  

 

Now, this was part one. Part two, we'll compute the matrix of the linear transformation in the following 
two bases. So the first basis is, in fact-- it is the standard basis for the space of two by two matrices. And 



the way we compute the matrix, we first compute what T does to each of the basis elements. So T of v1. 
Let's go back. So here.  

 

So T takes the transpose of this matrix. And we see that the transpose of 1, 0, 0, 0 is 1, 0, 0, 0. So it's a 
symmetric matrix. So T of v1. Here's v1. What about T of v2? Come back here. So this one comes here. 0 
comes here. And so we actually get v3. So T of v2 is v3. Similarly, T of v3 is v2.  

 

And finally, T of v4. Well, v4 is a symmetric matrix as well. So the transpose doesn't change it. OK. Now, 
we encode this into a matrix in the following way. Essentially, the first column will tell us how T of v1 is 
expressed as a linear combination of the basis elements.  

 

Or in this case, it's just v1. So it's going to be 1 times v1 plus 0, v2 plus 0, v3 plus 0, v4. T of v2 is v3. So 
we have 0, 0, 1, 0. T of v3 is 0 v1, 1 v2, 0 v3, 0 v4. And T of v4 is 0 v1, 0 v2, 0 v3, plus 1 v4.  

 

OK. So we've written down the matrix of the linear transformation, T, in the standard basis. And you can 
check that this is exactly what we want. The representation of some matrix, say, 1, 2, 3, 4, in this 
standard basis is, it's the vector 1, 2, 3, 4. T takes this to its transpose 1, 3, 2, 4.  

 

So this in the basis is represented as 1, 3, 2, 4. Right? And it's not hard to see that MT multiplies this 
vector, we get exactly this vector. So we'll pause for a bit, so that I erase the board. And we're going to 
return with the representation of T in the basis, w1, w2, w3, and w4.  

 

OK. So let's compute now the matrix T in the basis w1, w2, w3, and w4. We played the same game. We 
look at how T acts on each of the basis vectors. So T of w1-- well, w1 is a symmetric matrix. So T of w1 is 
w1. Similarly, with w2 and w3. They're all symmetric.  

 

What about w4? Well, we see that the 1 comes down here. The negative one comes up here. I mean, in 
the end we just get the negative of the w4. So, let me just write this out. We had T of w1 equal to w1, T 
of w2 equal to w2, T of w3 equal to w3, and T of w4, was negative on w4.  

 



So therefore, the matrix of the linear transformation, T, in this basis. I'm going to call the matrix M 
prime. T has a fairly simple expression. The only non-zero entries are on a diagonal. And they're 
precisely 1, 1, 1, and negative 1.  

 

And finally, let's tackle the eigenvalues slash eigenvectors issue. Well, you've seen what an eigenvector 
for a matrix is. And the idea for an eigenvalue, eigenvector for a linear transformation is virtually the 
same.  

 

And we are looking for the vectors v and the scale is lambda such that T of v is lambda of v. But if you 
guys look back to what we just did with w1, w2, w3, and w4, you'll see precisely that w1, w2, and w3 are 
eigenvectors for T with eigenvalue 1. And w4 is an eigenvector for T with eigenvalue negative 1.  

 

So yeah, we essentially have solved the problem knowing a very, very nice basis in which we computed 
the linear transformation, T. So I'll leave it at that.   
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