18.325 :: Homework 3 :: Fall 2012

In this problem set we will form an image from a fan-beam CT dataset.

Download and load the dataset in $MATLAb^{$ [®] with load siemens.mat

The array g is a sinogram. It has 513 rows, corresponding to uniformly sampled offsets t, and 360 columns, corresponding to uniform, all-around angular sampling with 1-degree steps in θ . The acquisition is fanbeam: a transformation is needed to recover the parallel-beam geometry. The fan-beam geometry manifests itself in that the angle depends on the offset t in a linear fashion. Instead of being just θ , it is $(1 \le t \le 513 \text{ is the row index})$

with

$$\theta + \frac{t - 251}{256}\alpha,$$
$$\sin \alpha = \frac{1}{2.87}.$$

Imaging from a parallel-beam sinogram is done by filtered backprojection. Filtering is multiplication by ω in the ω domain dual to the offset t. Backprojection of a sinogram $g(t, \theta)$ is

$$I(x) = \sum_{\theta} g(x \cdot \mathbf{e}_{\theta}, \theta),$$

where \mathbf{e}_{θ} is $(\cos \theta, \sin \theta)^T$. (Why is this the same thing as what we saw in class?) Form the image on a grid which has at least 100 by 100 grid points (preferably 200 by 200). You will need an interpolation routine since $x \cdot \mathbf{e}_{\theta}$ may not be an integer; piecewise linear interpolation is accurate enough (interp1 in MATLAb).

In your writeup, show your best image, your code, and write no more than one page to explain your choices.

18.325 Topics in Applied Mathematics: Waves and Imaging Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.