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Real Symmetric Matrices

We will only consider eigenvalue problems for real symmetric matrices
Then A = AT e R™™ 1 € R™, z* = !, and ||z]| = V2Tx
A then also has

real eigenvalues: \q, ..., A\,

orthonormal eigenvectors: q1, ..., Qqm

Eigenvectors are normalized ||¢;|| = 1, and sometimes the eigenvalues

are ordered in a particular way

Initial reduction to tridiagonal form assumed

— Brings cost for typical steps down from O(m?) to O(m)



Rayleigh Quotient

The Rayleigh quotient of x € R™:

L Ax

r(x) =

xl'x

For an eigenvector x, the corresponding eigenvalue is 7“(:1:) =\
For general x, r(x) = « that minimizes || Az — azx||s

x eigenvector of A <= Vr(z) = 0 with z # 0

r(x) is smooth and Vr(g;) = 0, therefore quadratically accurate:

r(z) —r(gs) = Oz — qs|I) asa — qs



Power Iteration

e Simple power iteration for largest eigenvalue:

Algorithm: Power Iteration
v(®) = some vector with ||[vV]| = 1
fork=1,2,...
w = AvF=1 apply A
) = w/||w| normalize
AF) = (pNT AgF) Rayleigh quotient

e Termination conditions usually omitted



Convergence of Power Iteration

Expand initial v in orthonormal eigenvectors ¢g;, and apply AF:

V=11 + asqz + -+

v®) = ¢, AR

= Ck(a1)\lf91 + CL2)\]2€Q2 + -+ am)\]:an)

= M (a1q1 + az(A2/X0) g2 + -+ + (A /A1) gm)

if A > [Xo| > -+ > |\ > 0and g7 v® £ 0, this gives:

k
), MWMO<

Finds the largest eigenvalue (unless eigenvector orthogonal to U(O))

A2
A1

A2
A1

[v® — (£a)l| = O (

Linear convergence, factor ~ )\2/)\1 at each iteration
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Inverse lteration

e Apply power iteration on (A — pI)~!, with eigenvalues (\; — 1) ™!

Algorithm: Inverse lteration
v(®) = some vector with ||[vV]| = 1
fork=1,2,...
Solve (A — pul)w = v*=Y for w apply (A — pl)~!
v = w/||lw]] normalize
AF) = (pNT AgF) Rayleigh quotient

e Converges to eigenvector ¢ if the parameter 1 is close to A ;:

k
(k) _ A — = As )\ | _ ',U_)\J
v + = 0 : A A7l =0
o~ ()] (‘M_AK ) B (M_AK
6

)



Rayleigh Quotient Iteration

e Parameter i is constant in inverse iteration, but convergence is better for

W close to the eigenvalue

e Improvement: At each iteration, set (4 to last computed Rayleigh quotient

Algorithm: Rayleigh Quotient Iteration

v(®) = some vector with ||[vV]| = 1
MO = (pON)T Ap©) = corresponding Rayleigh quotient
fork=1,2,...
Solve (A — A=Y Nw = v* =1 for w apply matrix
v = w/||lw]] normalize

AF) = (pNT AgF) Rayleigh quotient




Convergence of Rayleigh Quotient Iteration

e Cubic convergence in Rayleigh quotient iteration:
[0 — (£,) || = O([[0™ = (£45)I1P)
and

A — Ay = O(IAW =A%)

e Proof idea: If v'*) is close to an eigenvector, ||[v*) — ¢;|| < ¢, then the
accurate of the Rayleigh quotient estimate A(*) is [A\(*) — X\ ;| = O(€?).

One step of inverse iteration then gives

[0 — gyl = O(A® = A v — qull) = O(€?)



The QR Algorithm

e Remarkably simple algorithm: QR factorize and multiply in reverse order:

Algorithm: “Pure” QR Algorithm
A0 = A
fork=1,2,...
QR RKE) = Alk=1) QR factorization of A~V
Ak = REIQK) Recombine factors in reverse order

k)

e With some assumptions, Al converge to a Schur form for A (diagonal if

A symmetric)

e Similarity transformations of A:

A — RWQE — (QUNT A= ®
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Unnormalized Simultaneous lteration

To understand the QR algorithm, first consider a simpler algorithm

Simultaneous Iteration is power iteration applied to several vectors

Start with linearly independent vf’”, . ,vff’)

)

We know from power iteration that A’%%O converges to ¢q;

With some assumptions, the space (A%%O), e Akvf,(lo)> should

converge to q1, ..., (Qqn

Notation: Define initial matrix V'(9) and matrix V *) at step k:

s0 o0 | v® = Ay = | 0
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Unnormalized Simultaneous lteration

e Define well-behaved basis for column space of V' (¥) by Q(k)}?(k) = V%)

e Make the assumptions:
— The leading n + 1 eigenvalues are distinct

— All principal leading principal submatrices of QTV(O) are nonsingular,

where columns of () are q1, . . . , gy,

We then have that the columns of Q(k) converge to eigenvectors of A:

4 — +q;]| = O(C*)

where C' = maxi<p<n [Aes1|/| Ak

e Proof. Textbook / Black board
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Simultaneous lteration

e The matrices V' *) = A*V () are highly ill-conditioned

e Orthonormalize at each step rather than at the end:

Algorithm: Simultaneous Iteration

Pick Q(©) & Rmxn

fork=1,2,...
Z = AQ*-1
QR RF = 7 Reduced QR factorization of Z

e The column spaces of Q(k) and Z%) are both equal to the column space

of AkQ(O), therefore same convergence as before
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Simultaneous Iteration <= QR Algorithm

e The QR algorithm is equivalent to simultaneous iteration with Q(O) =1

e Notation: Replace R*) by R*) and Q%) by Q(k)

Simultaneous Iteration: Unshifted QR Algorithm:
QO =7 A0 — 4
h 7 — AQ(k—l) Alk=1) _ Q(k)R(k)
7 — Q(_k)R(k) Ak) — R(k)Q(’f)
Ak) — (_Q(k))TAQ(k) QW) =QWQ® ...QW

e Also define R = RO RE=1) ... Rp(1)

e Now show that the two processes generate same sequences of matrices
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Simultaneous Iteration <= QR Algorithm

e Both schemes generate the QR factorization A% = Q) R™ and the
projection A®) = (Q*)T AQW

e Proof. k = O trivial for both algorithms.

For £ > 1 with simultaneous iteration, A js given by definition, and

For £ > 1 with unshifted QR, we have

AF = AQ®-D g1 — (k=1 A=) k-1 — QW) R

and

AW — (QUNT AB-D QM) — ()T 40
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