
Chapter 7 

Matrix Completion 

Here we will give algorithms for the matrix completion problem, where we observe 
uniformly random entries of a low-rank, incoherent matrix M and we would like 
design efficient algorithms that exactly recover M . 

7.1 Background 

The usual motivation for studying the matrix completion problem comes from rec
ommendation systems. To be concrete, consider the Netflix problem where we are 
given ratings Mi,j that represent how user i rated movie j. We would like to use 
these ratings to make good recommendations to users, and a standard approach is 
to try to use our knowledge of some of the entries of M to fill in the rest of M . 

Let us be more precise: There is an unknown matrix M ∈ Rn×m whose rows 
represent users and whose columns represent movies in the example above. For each 
(i, j) ∈ Ω ⊆ [n] × [m] we are given the value Mi,j . Our goal is to recover M exactly. 
Ideally, we would like to find the minimum rank matrix X that agrees with M on 
the observed entries {Mi,j }(i,j)∈Ω however this problem is NP -hard. There are some 
now standard assumptions under which we will be able to give efficient algorithms 
for recovering M exactly: 

(a) Ω is uniformly random 

(b) The singular vectors of	 M are uncorrelated with the standard basis (such a 
matrix is called incoherent and we define this later) 

In fact, we will see that there are efficient algorithms for recovering M exactly if 
m ≈ mr log m where m ≥ n and rank(M) ≤ r. This is similar to compressed 
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sensing, where we were able to recover a k-sparse signal x from O(k log n/k) linear 
measurements, which is much smaller than the dimension of x. Here too we can 
recover a low-rank matrix M from a number of observations that is much smaller 
than the dimension of M . 

Let us examine the assumptions above. The assumption that should give us 
pause is that Ω is uniformly random. This is somewhat unnatural since it would 
be more believable if the probability we observe Mi,j depends on the value itself. 
Alternatively, a user should be more likely to rate a movie if he actually liked it. 

In order to understand the second assumption, suppose Ω is indeed uniformly 
random. Consider 

M = Π Ir 
0 

0 
0 ΠT 

where Π is a uniformly random permutation matrix. M is low-rank, but unless we 
observe all of the ones along the diagonal, we will not be able to recover M uniquely. 
Indeed, the singular vectors of M contain some of the standard basis vectors; but 
if we were to assume that the singular vectors of M are incoherent with respect to 
the standard basis, we could avoid the above problem. 

Definition 7.1.1 The coherence µ of a subspace U ⊆ Rn of dimension dim(u) = r 
is 

n 
max IPU eiI2 , 

r i 

where PU denotes the orthogonal projection onto U , and ei is the standard basis 
element. 

It is easy to see that if we choose U uniformly at random, then µ(U) = OA(1). Also 
we have that 1 ≤ µ(U) ≤ n/r and the upper bound is attained if U contains any ei. 
We can now see that if we set U to be the top singular vectors of the above example, 
then U has high coherence. We will need the following conditions on M : 

(a) Let M = UΣV T , then µ(U), µ(V ) ≤ µ0. 
√ 

(b) IUV T I∞ ≤ µ1 r , where || · ||∞ denotes the maximum absolute value of any 
n 

entry. 

The main result of this chapter is: 

Theorem 7.1.2 Suppose Ω is chosen uniformly at random. Then there is a poly
nomial time algorithm to recover M exactly that succeeds with high probability if 

m ≥ max(µ1
2 , µ0)r(n + m) log2(n + m) 

[ ]
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The algorithm in the theorem above is based on a convex relaxation for the rank 
of a matrix called the nuclear norm. We will introduce this in the next section, 
and establish some of its properties but one can think of it as an analogue to the 
f1 minimization approach that we used in compressed sensing. This approach was 
first introduced in Fazel’s thesis [58], and Recht, Fazel and Parrilo [104] proved that 
this approach exactly recovers M in the setting of matrix sensing, which is related 
to the problem we consider here. 

In a landmark paper, Candes and Recht [33] proved that the relaxation based 
on nuclear norm also succeeds for matrix completion and introduced the assumptions 
above in order to prove that their algorithm works. There has since been a long line 
of work improving the requirements on m, and the theorem above and our exposition 
will follow a recent paper of Recht [103] that greatly simplifies the analysis by making 
use of matrix analogues of the Bernstein bound and using these in a procedure now 
called quantum golfing that was first introduced by Gross [67]. 

Remark 7.1.3 We will restrict to M ∈ Rn×n and assume µ0, µ1 = OA(1) in our 
analysis, which will reduce the number of parameters we need to keep track of. Also 
let m = n. 

7.2 Nuclear Norm 

Here we introduce the nuclear norm, which will be the basis for our algorithms for 
matrix completion. We will follow a parallel outline to that of compressed sensing. 
In particular, a natural starting point is the optimization problem: 

(P 0) min rank(X) s.t. Xi,j = Mi,j for all (i, j) ∈ Ω 

This optimization problem is NP -hard. If σ(X) is the vector of singular values of 
X then we can think of the rank of X equivalently as the sparsity of σ(X). Recall, 
in compressed sensing we faced a similar obstacle: finding the sparsest solution 
to a system of linear equations is also NP -hard, but we instead considered the 
f1 relaxation and proved that under various conditions this optimization problem 
recovers the sparsest solution. Similarly it is natural to consider the f1-norm of σ(X) 
which is called the nuclear norm: 

Definition 7.2.1 The nuclear norm of X denoted by IXI∗ is Iσ(X)I1. 

We will instead solve the convex program: 

(P 1) min IXI∗ s.t. Xi,j = Mi,j for all (i, j) ∈ Ω 
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and our goal is to prove conditions under which the solution to (P 1) is exactly M . 
Note that this is a convex program because IXI∗ is a norm, and there are a variety 
of efficient algorithms to solve the above program. 

In fact, for our purposes a crucial notion is that of a dual norm. We will not 
need this concept in full-generality, so we state it for the specific case of the nuclear 
norm. This concept gives us a method to lower bound the nuclear norm of a matrix: 

Definition 7.2.2 Let X, B = i,j Xi,j Bi,j = trace(XT B) denote the matrix inner-
product. 

Lemma 7.2.3 IXI∗ = max B �≤1 X, B . 

To get a feel for this, consider the special case where we restrict X and B to be 
diagonal. Moreover let X = diag(x) and B = diag(b). Then IXI∗ = IxI1 and 
the constraint IBI ≤ 1 (the spectral norm of B is at most one) is equivalent to 
IbI∞ ≤ 1. So we can recover a more familiar characterization of vector norms in 
the special case of diagonal matrices: 

bTIxI1 = max x 
b ∞≤1 

Proof: We will only prove one direction of the above lemma. What B should we 
use to certify the nuclear norm of X. Let X = UX ΣX VX

T , then we will choose 
B = UX VX

T . Then 

X, B = trace(BT X) = trace(VX U
T UX ΣX V T ) = trace(VX ΣX V T ) = trace(ΣX ) = IXI∗X X X 

where we have used the basic fact that trace(ABC) = trace(BCA). Hence this 
proves IXI∗ ≤ max B �≤1 X, B , and the other direction is not much more difficult 
(see e.g. [74]). • 

How can we show that the solution to (P 1) is M? Our basic approach will 
be a proof by contradiction. Suppose not, then the solution is M + Z for some Z 
that is supported in Ω. Our goal will be to construct a matrix B of spectral norm 
at most one for which 

IM + ZI∗ ≥ M + Z,B > IMI∗ 

Hence M + Z would not be the optimal solution to (P 1). This strategy is similar to 
the one in compressed sensing, where we hypothesized some other solution w that 
differs from x by a vector y in the kernel of the sensing matrix A. We used geometric 
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properties of ker(A) to prove that w has strictly larger f1 norm than x. However the 
proof here will be more involved since our strategy is to construct B above based 
on Z (rather than relying on some geometry property of A that holds regardless of 
what y is). 

Let us introduce some basic projection operators that will be crucial in our 
proof. Recall, M = UΣV T , let u1, . . . , ur be columns of U and let v1, . . . , vr be 
columns of V . Choose ur+1, . . . , un so that u1, . . . , un form an orthonormal basis 
for all of Rn – i.e. ur+1, . . . , un is an arbitrary orthonormal basis of U⊥ . Similarly 
choose vr+1, . . . , vn so that v1, . . . , vn form an orthonormal basis for all of Rn . We 
will be interested in the following linear spaces over matrices: 

Definition 7.2.4 T = span{uivT | 1 ≤ i ≤ r or 1 ≤ j ≤ r or both}.j 

Then T ⊥ = span{uivT s.t. r +1 ≤ i, j ≤ n}.. We have dim(T ) = r2 + 2(n − r)r andj 
dim(T ⊥) = (n − r)2 . Moreover we can define the linear operators that project into 
T and T ⊥ respectively: 

nr 
PT ⊥ [Z] = Z, uiv T · Uiv T = PU⊥ ZPV ⊥ .j j 

i,j=r+1 

And similarly r 
PT [Z] = Z, uiv T · uiv T = PU Z + ZPV − PU ZPV .j j  

(i,j)∈[n]×[n]−[r+1,n]×[r+1,n]  

We are now ready to describe the outline of the proof of Theorem 7.1.2. The 
proof will be based on: 

(a) We will assume that a certain helper matrix Y exists, and show that this is 
enough to imply IM + ZI∗ > IMI∗ for any Z supported in Ω 

(b) We will construct such a Y using quantum golfing [67]. 

Part (a) 

Here we will state the conditions we need on the helper matrix Y and prove that if 
such a Y exists, then M is the solution to (P 1). We require that Y is supported in 
Ω and 

(a) IPT (Y ) − UV T IF ≤ r/8n 

〈 〉
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(b) IPT ⊥ (Y )I ≤ 1/2. 

We want to prove that for any Z supported in Ω, IM + ZI∗ > IMI∗. Recall, 
we want to find a matrix B of spectral norm at most one so that M +Z,B > IMI∗. 
Let U⊥ and V⊥ be singular vectors of PT ⊥ [Z]. Then consider 

V T 
B = U	 U⊥ · = UV T + U⊥V⊥ 

T . 
V T 
⊥ 

Claim 7.2.5 IBI ≤ 1 

Proof: By construction UT U⊥ = 0 and V T V⊥ = 0 and hence the above expression 
for B is its singular value decomposition, and the claim now follows. • 

Hence we can plug in our choice for B and simplify: 

IM + ZI∗	 ≥ M + Z, B 
= M + Z, UV T + U⊥V⊥ 

T 

= M, UV T + Z, UV T + U⊥V⊥ 
T 

M ∗ 

where in the last line we used the fact that M is orthogonal to U⊥V⊥ 
T . Now using 

the fact that Y and Z have disjoint supports we can conclude: 

IM + ZI∗ ≥ IMI∗ + Z, UV T + U⊥V⊥ 
T − Y 

Therefore in order to prove the main result in this section it suffices to prove that 
Z, UV T + U⊥V T − Y > 0. We can expand this quantity in terms of its projection 
onto T and T ⊥

⊥ 
and simplify as follows: 

IM + ZI∗ − IMI∗ ≥ PT (Z), PT (UV T + U⊥V⊥ 
T − Y ) + PT ⊥ (Z), PT ⊥ (UV T + U⊥V⊥ 

T − Y ) 
≥ PT (Z), UV T − PT (Y ) + PT ⊥ (Z), U⊥V⊥ 

T − PT ⊥ (Y ) 
≥ PT (Z), UV T − PT (Y ) + IPT ⊥ (Z)I∗ − PT ⊥ (Z), PT ⊥ (Y ) 

where in the last line we used the fact that U⊥ and V⊥ are the singular vectors of 
PT ⊥ [Z] and hence U⊥V⊥ 

T , PT ⊥ [Z] = IPT ⊥ [Z]I∗. 
Now we can invoke the properties of Y that we have assumed in this section, 

to prove a lower bound on the right hand side. By property (a) of Y , we have that 
rIPT (Y ) − UV T IF ≤ 
2n . Therefore, we know that the first term PT (Z), UV T − 

PT (Y ) ≥ − 
8
r
n IPT (Z)IF . By property (b) of Y , we know the operator norm 
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of PT 
⊥(Y ) is at most 1/2. Therefore the third term PT ⊥ (Z), PT ⊥ (Y ) is at most 

1 IPT ⊥ (Z)I∗. Hence2 

r 1 ? 
IM + ZI∗ − IMI∗ ≥ − IPT (Z)IF + IPT ⊥ (Z)I∗ > 0 

8n 2 

We will show that with high probability over the choice of Ω that the inequality 
does indeed hold. We defer the proof of this last fact, since it and the construction 
of the helper matrix Y will both make use of the matrix Bernstein inequality which 
we present in the next section. 

7.3 Quantum Golfing 

What remains is to construct a helper matrix Y and prove that with high probability 
over Ω, for any matrix Z supported in Ω that IPT ⊥ (Z)I∗ > 

2
r
n IPT (Z)IF to 

complete the proof we started in the previous section. We will make use of an 
approach introduced by Gross [67] and we will follow the proof of Recht in [103] 
where the strategy is to construct Y iteratively. In each phase, we will invoke 

r 

concentration results for matrix valued random variables to prove that the error 
part of Y decreases geometrically and we make rapid progress in constructing a 
good helper matrix. 

First we will introduce the key concentration result that we will apply in several 
settings. The following matrix valued Bernstein inequality first appeared in the work 
of Ahlswede and Winter related to quantum information theory [6]. 

Theorem 7.3.1 (Non-commutative Bernstein Inequality) Let X1 . . . Xl be in
dependent mean 0 matrices of size d × d. Let ρ2 = max{I E[XkX

T ]I, I E[XT Xk]I}k k k 
and suppose IXkI ≤ M almost surely. Then for τ > 0, 

l −τ 2/2 ≤ 2d expPr  Xk > τ  
k ρk 

2 + Mτ/3 
k=1 

If d = 1 this is the standard Bernstein inequality. If d > 1 and the matrices Xk are 
diagonal then this inequality can be obtained from the union bound and the standard 
Bernstein inequality again. However to build intuition, consider the following toy 
problem. Let uk be a random unit vector in Rd and let Xk = ukukT . Then it is easy 
to see that ρ2 = 1/d. How many trials do we need so that is close to the k k Xk 
identity (after scaling)? We should expect to need Θ(d log d) trials; this is even true 
if uk is drawn uniformly at random from the standard basis vectors {e1 . . . ed} due to 
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the coupon collector problem. Indeed, the above bound corroborates our intuition 
that Θ(d log d) is necessary and sufficient. 

Now we will apply the above inequality to build up the tools we will need to 
finish the proof. 

Definition 7.3.2 Let RΩ be the operator that zeros out all the entries of a matrix 
except those in Ω. 

Lemma 7.3.3 If Ω is chosen uniformly at random and m ≥ nr log n then with high 
probability 

n2 ∥  �∥  
m

Remark 7.3.4 Here we are inter

���∥∥∥∥ m
2

∥ 1
PT RΩPT − PT ∥�� < 

∥∥  
n 2 

  ested in bounding the operator norm of a linear 
operator on matrices. Let T be such an operator, then IT I is defined as 

max IT (Z)
≤

IF 
�‖Z ‖�F 1 

We will explain how this bound fits into the framework of the matrix Bernstein 
inequality, but for a full proof see [103]. Note that E[PT RΩPT ] = PT E[RΩ]PT = 
m 
2 PT and so we just need to show that PTn  RΩPT does not deviate too far from its 

expectation. Let e1, e2, . . . , ed be the standard basis vectors. Then we can expand: 

 
r 

PT (Z) = �〈P T
T (Z), eaeb  〉�eaeTb  

=
ra,b 

 
 �〈P (Z), e eT a  T

T b eaeb  
a,b 

〉�

 
= 

r
�〈  T T Z, PT (eaeb ) eaeb

a,b 

〉�

 T T Hence RΩPT (Z) = 
 ∑

(a,b)∈Ω Z, PT (eaeb ) eaeb and finally we conclude that 

 
P T T
T R T 

〈 
(Z) = 

〉
ΩP

 
r

Z, PT (eaeb  ) PT (eaeb  ) 
(a,b)∈Ω 

〈 〉 
〈W e can think of PT RΩPT as the sum of random operators of the form τa,b : Z → 
Z, P T P T

T (eaeb ) T (eaeb ), and the lemma follows by applying the matrix Bernstein 
inequality to 

〉 
the random operator 

∑ 
(a,b) τ . ∈Ω a,b

We can now complete the deferred proof of part (a): 
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Lemma 7.3.5 If Ω is chosen uniformly at random and m ≥ nr log n then with high 
probability for any Z supported in Ω we have 

r IPT ⊥ (Z)I∗ > IPT (Z)IF
2n 

Proof: Using Lemma 7.3.3 and the definition of the operator norm (see the remark) 
we have 

m m 
Z, PT RΩPT Z − PT Z ≥ − IZIF 

2 
2 2n 2n

Furthermore we can upper bound the left hand side as: 

Z, PT RΩPT Z = Z, PT R
2 PT Z = IRΩ(Z − PT ⊥ (Z))I2 
Ω F 

= IRΩ(PT ⊥ (Z))I2 
F ≤ IPT ⊥ (Z)IF 

2 

where in the last line we used that Z is supported in Ω and so RΩ(Z) = 0. Hence 
we have that 

m m IPT ⊥ (Z)I2 ≥ IPT (Z)I2 − IZI2 
F F F2 2n 2n

We can use the fact that IZI2 = IPT ⊥ (Z)IF 
2 +IPT (Z)I2 and conclude IPT ⊥ (Z)I2 ≥F F F  

m  
4n
IPT (Z)I2 We can now complete the proof of the lemma 2 F . 

m IPT ⊥ (Z)I∗ 2 ≥ IPT ⊥ (Z)IF 
2 ≥ IPT (Z)IF 

2 
24n

r 
> IPT (Z)I2 

F2n 
• 

All that remains is to prove that the helper matrix Y that we made use of 
actually does exists (with high probability). Recall that we require that Y is sup
ported in Ω and IPT (Y ) − UV T IF ≤ r/8n and IPT ⊥ (Y )I ≤ 1/2. The basic idea 
is to break up Ω into disjoint sets Ω1, Ω2, . . . Ωp, where p = log n and use each set 
of observations to make progress on the remained PT (Y ) − UV T . More precisely, 
initialize Y0 = 0 in which case the remainder is W0 = UV T . Then set 

2n
Yi+1 = Yi + RΩi+1 (Wi) 

m 

and update Wi+1 = UV T − PT (Yi+1). It is easy to see that E[n
m 
2 
RΩi+1 ] = I. Intu

itively this means that at each step Yi+1 − Yi is an unbiased estimator for Wi and so 
we should expect the remainder to decrease quickly (here we will rely on the concen
tration bounds we derived from the non-commutative Bernstein inequality). Now 

√
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we can explain the nomenclature quantum golfing; at each step, we hit our golf ball 
in of the hole  the direction but here our target is to approximate the matrix UV T
which for various reasons is the t ∑ype of question that arises in quantum mechanics. 

It is easy to see that Y = i Yi is supported in Ω and that PT (Wi) = Wi for
all i. Hence we can compute 

I  PT (Yi) − UV TIF = 
∥∥∥��∥∥∥� n2�Wi 1 − P− T RΩi Wi−1 

��∥∥ ��∥∥�∥ = 
��∥∥∥ n2∥ �∥∥∥PT Wi−1 − PT RΩ

F m  PT Wi
m i −1 

n2 m 1 

∥∥��∥
 PT RΩPT  PT Wi−1 F2

�∥∥�
m

− ≤

last

∥ F 

≤
n

where

�
2 

 the

�∥ ∥
I I

  inequality 

∥�∥
follows from Lemma

∥�∥
 7.3.3. Therefore the Frobenius norm 

of

�
 the remainder

∥
  decreases

∥
 geometrically and

∥�
 it is easy to guarantee that Y satisfies 

condition (a). 

The more technically involved part is showing that Y also satisfies condition 
(b). However the intuition is that IP  ⊥ T (Y1)I is itself not too large, and since the 
norm of the remainder Wi decreases geometrically we should expect that IPT ⊥ (Yi)I 
does too and so most of the contribution to 

I  ⊥ T (Y )I ≤ 
r 

P IP  T ⊥(Yi)
i 

I 

comes from the first term. For the full details see [103]. This completes the proof 
that computing the solution to the convex program indeed finds M exactly, provided 
that M is incoherent and |Ω| ≥ max(µ2

1, µ0)r(n + m) log2(n + m). 
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