New Algorithms for Nonnegative Matrix Factorization and Beyond

Ankur Moitra
Institute for Advanced Study and Princeton University

INFORMATION OVERLOAD!

Challenge: develop tools for automatic comprehension of data

This image has been removed due to copyright restrictions.
Please see: http://gretchenrubin.com/wp-content/uploads/2015/07/booksfillthescreen.jpg.

Topic Modeling: (Dave Blei, etc.)

- Discover hidden topics
- Annotate documents according to these topics
- Organize and summarize the collection

INFORMATION OVERLOAD!

Challenge: develop tools for automatic comprehension of data
$\underset{\text { By paul suluvan }}{\text { Parceling }}$ Out a Nest Egg, Without Emptying It
What clients often forget are fixed costs - homes, cars, insurance - that must come down
but take time to reduce, she said. Beyond that is her clients' skittish approach to risk;
putting all of their money in cash may make them feel safe, she said, but it probably will
not support the lifestyle they want for decades.
A generational disconnect is at work here: most people plan to retire at 65 , the retirement age established for Social Security in 1935, when the average life expectancy was 61 . Today the average is over 80 for men and women with a college degree.

So the $\$ 5.12$ million gift exemption - created in a compromise between President Obama and Congress in 2010 - presents the well-off with a decision laden with short- and longterm consequences. How much should they give heirs now - and thus avoid giving the government in estate taxes later - while maintaining their lifestyle over a probably longer but still unpredictable remaining life span?
© 2015 The New York Times Company. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Topic Modeling: (Dave Blei, etc.)

- Discover hidden topics
- Annotate documents according to these topics
- Organize and summarize the collection

INFORMATION OVERLOAD!

Challenge: develop tools for automatic comprehension of data

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Topic Modeling: (Dave Blei, etc.)

- Discover hidden topics
- Annotate documents according to these topics
- Organize and summarize the collection

INFORMATION OVERLOAD!

Challenge: develop tools for automatic comprehension of data

Image courtesy of the Stanford Natural Language Processing Group. Used with permission.

Topic Modeling: (Dave Blei, etc.)

- Discover hidden topics
- Annotate documents according to these topics
- Organize and summarize the collection

Parceling Out a Nest Egg, Without Emptying It By PAUL SULLIVAN

What clients often forget are fixed costs - homes, cars, insurance - that must come down but take time to reduce, she said. Beyond that is her clients' skittish approach to risk; putting all of their money in cash may make them feel safe, she said, but it probably will not support the lifestyle they want for decades.

A generational disconnect is at work here: most people plan to retire at 65, the retirement age established for Social Security in 1935, when the average life expectancy was 61 . Today the average is over 80 for men and women with a college degree.

So the $\$ 5.12$ million gift exemption - created in a compromise between President Obama and Congress in 2010 - presents the well-off with a decision laden with short- and longterm consequences. How much should they give heirs now - and thus avoid giving the government in estate taxes later - while maintaining their lifestyle over a probably longer but still unpredictable remaining life span?

Personal Finance: (money, 0.15), (retire, 0.10), (risk, 0.03) ...
Politics: (President Obama, 0.10), (congress, 0.08), (government, 0.07), ...

Parceling Out a Nest Egg, Without Emptying It by paul sullivan

What clients often forget are fixed costs - homes, cars, insurance - that must come down but take time to reduce, she said. Beyond that is her clients' skittish approach to risk; putting all of their money in cash may make them feel safe, she said, but it probably will not support the lifestyle they want for decades.

A generational disconnect is at work here: most people plan to retire at 65 , the retirement age established for Social Security in 1935, when the average life expectancy was 61 . Today the average is over 80 for men and women with a college degree.

So the $\$ 5.12$ million gift exemption - created in a compromise between President Obama and Congress in 2010 - presents the well-off with a decision laden with short- and longterm consequences. How much should they give heirs now - and thus avoid giving the government in estate taxes later - while maintaining their lifestyle over a probably longer but still unpredictable remaining life span?
© 2015 The New York Times Company. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- Each document is a distribution on topics

- Each topic is a distribution on words

OUTLINE
Are there efficient algorithms to find the topics?
Challenge: We cannot rigorously analyze algorithms used in practice! (When do they work? run quickly?)

Part I: An Optimization Perspective

- Nonnegative Matrix Factorization
- Separability and Anchor Words
- Algorithms for Separable Instances

Part II: A Bayesian Perspective

- Topic Models (e.g. LDA, CTM, PAM, ...)
- Algorithms for Inferring the Topics
- Experimental Results

WORD-BY-DOCUMENT MATRIX

documents (n)

WORD-BY-DOCUMENT MATRIX

WORD-BY-DOCUMENT MATRIX

documents (n)

NONNEGATIVE MATRIX FACTORIZATION

NONNEGATIVE MATRIX FACTORIZATION

WLOG we can assume columns of \mathbf{A}, \mathbf{W} sum to one

NONNEGATIVE MATRIX FACTORIZATION

WLOG we can assume columns of \mathbf{A}, \mathbf{W} sum to one

NONNEGATIVE MATRIX FACTORIZATION

E.g. "personal finance", (0.15, money), (0.10, retire), (0.03, risk), ...

WLOG we can assume columns of \mathbf{A}, \mathbf{W} sum to one

NONNEGATIVE MATRIX FACTORIZATION

E.g. "personal finance", (0.15, money), (0.10, retire), (0.03, risk), ...

WLOG we can assume columns of \mathbf{A}, \mathbf{W} sum to one

NONNEGATIVE MATRIX FACTORIZATION

E.g. "personal finance", (0.15, money), (0.10, retire), (0.03, risk), ...

WLOG we can assume columns of \mathbf{A}, \mathbf{W} sum to one

NONNEGATIVE MATRIX FACTORIZATION

E.g. "personal finance", (0.15, money), (0.10, retire), (0.03, risk), ...

WLOG we can assume columns of \mathbf{A}, \mathbf{W} sum to one

AN ABRIDGED HISTORY

Machine Learning and Statistics:

- Introduced by [Lee, Seung, '99]
- Goal: extract latent relationships in the data
- Applications to text classification, information retrieval, collaborative filtering, etc [Hofmann '99], [Kumar et al '98], [Xu et al '03], [Kleinberg, Sandler '04],...
Theoretical Computer Science:
- Introduced by [Yannakakis '90] in context of extended formulations; also related to the log-rank conjecture Physical Modeling:
- Introduced by [Lawton, Sylvestre '71]
- Applications in chemometrics, environmetrics, economics

ALGORITHMS FOR NMF?

Local Search: given A, compute W, compute A....

- known to fail on worst-case inputs (stuck in local optima)
- highly sensitive to cost-function, update procedure, regularization

Can we give an efficient algorithm that works on all inputs?

WORST-CASE COMPLEXITY OF NMF

Theorem [Vavasis ‘09]: It is NP-hard to compute NMF
Theorem [Cohen, Rothblum '93]: Can solve NMF in time (nm) ${ }^{\text {O(nrtmr) }}$
What is the complexity of NMF as a function of r ?
Theorem [Arora, Ge, Kannan, Moitra, STOC'12]: Can solve NMF in time $(\mathrm{nm})^{0\left(\mathrm{r}^{2}\right)}$ yet any algorithm that runs in time $(\mathrm{nm})^{0(\mathrm{r})}$ would yield a $2^{\circ(n)}$ algorithm for 3-SAT.

Can we reduce the number of variables from $\mathrm{nr}+\mathrm{mr}$ to $\mathrm{O}\left(\mathrm{r}^{2}\right)$?

ALGORITHMS FOR NMF?

Local Search: given A, compute W, compute A....

- known to fail on worst-case inputs (stuck in local optima)
- highly sensitive to cost-function, update procedure, regularization

Can we give an efficient algorithm that works on all inputs?
Yes, if and only if r is constant

Are the instances we actually want to solve somehow easier?
Focus of this talk: a natural condition so that a simple algorithm provably works, quickly

SEPARABILITY AND ANCHOR WORDS

topics (r)

SEPARABILITY AND ANCHOR WORDS

topics (r)

If an anchor word occurs then the
document is at least partially about the topic

SEPARABILITY AND ANCHOR WORDS

If an anchor word
occurs then the
document is at least partially about the topic

SEPARABILITY AND ANCHOR WORDS

If an anchor word occurs then the
document is at least partially about the topic

SEPARABILITY AND ANCHOR WORDS

topics (r)

If an anchor word occurs then the
document is at least partially about the topic

SEPARABILITY AND ANCHOR WORDS

If an anchor word occurs then the
document is at least partially about the topic

SEPARABILITY AND ANCHOR WORDS

If an anchor word occurs then the document is at least partially about the topic

SEPARABILITY AND ANCHOR WORDS

topics (r)

If an anchor word occurs then the document is at least partially about the topic

SEPARABILITY AND ANCHOR WORDS

If an anchor word occurs then the
document is at least partially about the topic

SEPARABILITY AND ANCHOR WORDS

SEPARABILITY AND ANCHOR WORDS

SEPARABILITY AND ANCHOR WORDS

Theorem [Arora, Ge, Kannan, Moitra, STOC'12]: There is an $\mathrm{O}\left(\mathrm{nmr}+\mathrm{mr}^{3.5}\right)$ time algorithm for NMF when the topic matrix \mathbf{A} is separable

Topic Models: documents are stochastically generated as a convex combination of topics

Theorem [Arora, Ge, Moitra, FOCS'12]: There is a polynomial time algorithm that learns the parameters of any topic model provided that the topic matrix \mathbf{A} is p -separable.

In fact our algorithm is highly practical, and runs orders of magnitude faster with nearly-identical performance as the current best (Gibbs Sampling)

See also [Anandkumar et al '12], [Rabani et al '12] that give algorithms based on the method of moments

How do anchor words help?

ANCHOR WORDS \cong VERTICES

A W

ANCHOR WORDS \cong VERTICES

A
W
M

How do anchor words help?

Observation: If \mathbf{A} is separable, the rows of \mathbf{W} appear as rows of \mathbf{M}, we just need to find the anchor words!

How can we find the anchor words?

ANCHOR WORDS \cong VERTICES

A
W
M

ANCHOR WORDS \cong VERTICES

A W M

ANCHOR WORDS \cong VERTICES

A
 W

M

ANCHOR WORDS \cong VERTICES

$$
A \quad W
$$

M

ANCHOR WORDS \cong VERTICES

A W

ANCHOR WORDS \cong VERTICES

ANCHOR WORDS \cong VERTICES

A
 W

M

ANCHOR WORDS \cong VERTICES

A
 W
 M

Deleting a word changes the convex hull

it is an anchor word

How do anchor words help?

Observation: If \mathbf{A} is separable, the rows of \mathbf{W} appear as rows of \mathbf{M}, we just need to find the anchor words!

How can we find the anchor words?

Anchor words are extreme points; can be found by linear programming (or a combinatorial distance-based algorithm)

The NMF Algorithm:

- find the anchor words (linear programming)
- paste these vectors in as rows in W
- find the nonnegative \mathbf{A} so that $\mathrm{AW} \approx \mathrm{M}$ (convex programming)

OUTLINE
Are there efficient algorithms to find the topics?
Challenge: We cannot rigorously analyze algorithms used in practice! (When do they work? run quickly?)

Part I: An Optimization Perspective

- Nonnegative Matrix Factorization
- Separability and Anchor Words
- Algorithms for Separable Instances

Part II: A Bayesian Perspective

- Topic Models (e.g. LDA, CTM, PAM, ...)
- Algorithms for Inferring the Topics
- Experimental Results

TOPIC MODELS

fixed stochastic

TOPIC MODELS

fixed stochastic

document \#1: (1.0, personal finance)

TOPIC MODELS

fixed stochastic

document \#1: (1.0, personal finance)

TOPIC MODELS

fixed stochastic
A
W
M

TOPIC MODELS

fixed stochastic

document \#2: (0.5, baseball); (0.5, movie review)

TOPIC MODELS

fixed stochastic

document \#2: (0.5, baseball); (0.5, movie review)

TOPIC MODELS

fixed stochastic

document \#2: (0.5, baseball); (0.5, movie review)

TOPIC MODELS

Latent Dirichlet Allocation (Blei, Ng, Jordan)

fixed Dirichlet

document \#2: (0.5, baseball); (0.5, movie review)

TOPIC MODELS

fixed

document \#2: (0.5, baseball); (0.5, movie review)

TOPIC MODELS

Correlated Topic Model (Blei, Lafferty)

fixed Logisitic Normal

document \#2: (0.5, baseball); (0.5, movie review)

TOPIC MODELS

fixed

document \#2: (0.5, baseball); (0.5, movie review)

TOPIC MODELS

Pachinko Allocation Model (Li, McCallum)

fixed Multilevel DAG

document \#2: (0.5, baseball); (0.5, movie review)

TOPIC MODELS

Pachinko Allocation Model (Li, McCallum)

fixed Multilevel DAG

document \#2: (0.5, baseball); (0.5, movie review)
These models differ only in how \mathbf{W} is generated

ALGORITHMS FOR TOPIC MODELS?

What if documents are short; can we still find \mathbf{A} ?

The crucial observation is, we can work with the Gram matrix (defined next...)

GRAM MATRIX (WHY? BECAUSE IT CONVERGES)

Gram Matrix
$\widehat{M} \hat{M}^{\top}$

GRAM MATRIX (WHY? BECAUSE IT CONVERGES)

Gram Matrix
 $\widehat{M} \hat{M}^{\top}$

A

W W^{\top}

GRAM MATRIX (WHY? BECAUSE IT CONVERGES)

Gram Matrix

$$
\hat{M} \hat{M}^{\top} \longrightarrow \mathrm{C} E\left[M M^{\top}\right]
$$

$W^{W}{ }^{\top}$

GRAM MATRIX (WHY? BECAUSE IT CONVERGES)

Gram Matrix

$$
\widehat{M} \widehat{M}^{\top} \longrightarrow E\left[M M^{\top}\right]=A E\left[W W^{\top}\right] A^{\top}
$$

A

$W^{W}{ }^{\top}$

GRAM MATRIX (WHY? BECAUSE IT CONVERGES)

Gram Matrix

$\widehat{M} \hat{M}^{\top} \longrightarrow E\left[M M^{\top}\right]=A E\left[W W^{\top}\right] A^{\top} \longrightarrow A R A^{\top}$

GRAM MATRIX (WHY? BECAUSE IT CONVERGES)

Gram Matrix

$\widehat{M} \widehat{M}^{\top} \longrightarrow E\left[M M^{\top}\right]=A E\left[W W^{\top}\right] A^{\top} \longrightarrow A R A^{\top}$

GRAM MATRIX (WHY? BECAUSE IT CONVERGES)

Gram Matrix

$\widehat{M} \hat{M}^{\top} \longrightarrow E\left[M M^{\top}\right]=A E\left[W W^{\top}\right] A^{\top} \longrightarrow A R A^{\top}$

GRAM MATRIX (WHY? BECAUSE IT CONVERGES)

Gram Matrix

$$
\widehat{M} \hat{M}^{\top} \longrightarrow E\left[M M^{\top}\right]=A E\left[W W^{\top}\right] A^{\top} \longrightarrow A R A^{\top}
$$

Anchor words are extreme rows of the Gram matrix!

ALGORITHMS FOR TOPIC MODELS?

What if documents are short; can we still find \mathbf{A} ?

The crucial observation is, we can work with the Gram matrix (defined next...)

Given enough documents, we can still find the anchor words!

How can we use the anchor words to find the rest of \mathbf{A} ?
The posterior distribution $\operatorname{Pr}[$ topic|word $]$ is supported on just one topic, for an anchor word

We can use the anchor words to find $\operatorname{Pr[topic|word]~for~all~the~}$ other words...

BAYES RULE (OR HOW TO USE ANCHOR WORDS)

points are now
(normalized) rows of $\widehat{M} \widehat{M}^{\top}$

A

BAYES RULE (OR HOW TO USE ANCHOR WORDS)

points are now
(normalized) ${ }_{\text {rows of }}^{\hat{M}} \hat{M}^{\top}$

A

BAYES RULE (OR HOW TO USE ANCHOR WORDS)

points are now
(normalized)
rows of $\widehat{M} \hat{M}^{\top}$
A

word \#3: (0.5, anchor \#2); (0.5, anchor \#3)

BAYES RULE (OR HOW TO USE ANCHOR WORDS)

points are now
(normalized)
rows of $\widehat{M} \widehat{M}^{\top}$

word \#3: (0.5, anchor \#2); (0.5, anchor \#3)
半

Pr[topic|word \#3]: (0.5, topic \#2); (0.5, topic \#3)

BAYES RULE (OR HOW TO USE ANCHOR WORDS)

points are now
(normalized) ${ }_{\text {rows of }}^{\hat{M}}{ }^{\top}$

what we have:
$\operatorname{Pr[topic|word]}$
word \#3: (0.5, anchor \#2); (0.5, anchor \#3)
金

Pr[topic|word \#3]: (0.5, topic \#2); (0.5, topic \#3)

BAYES RULE (OR HOW TO USE ANCHOR WORDS)

points are now
(normalized) ${ }_{\text {rows of }}^{\hat{M}}{ }^{\top}$

A

what we have:
$\operatorname{Pr[topic|word]}$
what we want:

$\operatorname{Pr}[$ word|topic]

word \#3: (0.5, anchor \#2); (0.5, anchor \#3)
食
Pr[topic|word \#3]: (0.5, topic \#2); (0.5, topic \#3)

BAYES RULE (OR HOW TO USE ANCHOR WORDS)

points are now (normalized) ${ }_{\text {rows of }}^{\hat{M}}{ }^{\top}$

what we have:
$\operatorname{Pr[topic|word]}$
word \#3: (0.5, anchor \#2); (0.5, anchor \#3)
劵

Pr[topic|word \#3]: (0.5, topic \#2); (0.5, topic \#3)

Compute A using Bayes Rule:

$\operatorname{Pr}[$ topic|word] $\operatorname{Pr[word]}$
 $\operatorname{Pr}[$ word|topic] $=$
 $\sum \operatorname{Pr}[$ topic|word'] Pr[word'] word'

Compute A using Bayes Rule:

$\operatorname{Pr}[$ topic|word] $\operatorname{Pr[word]}$

$\operatorname{Pr}[$ word \mid topic $]=$
$\left.\sum_{\text {word' }^{\prime}}^{\operatorname{Pr}[t o p i c \mid w o r d '] ~} \operatorname{Pr[word}{ }^{\prime}\right]$

The Topic Model Algorithm:

- form the Gram matrix and find the anchor words
- write each word as a convex combination of the anchor words to find $\operatorname{Pr}[$ topic|word]
- compute A from the formula above

This provably works for any topic model (LDA, CTM, PAM, etc ...) provided \mathbf{A} is separable and \mathbf{R} is non-singular

The previous algorithm was inspired by experiments!

Our first attempt used matrix inversion, which is noisy and unstable and can produce small negative values

METHODOLOGY:

We ran our algorithm on real and synthetic data:

- synthetic data: train an LDA model on 1100 NIPS abstracts, use this model to run experiments

Our algorithm is fifty times faster and performs nearly the same on all metrics we tried (I_1, log-likelihood, coherence,...) when compared to MALLET

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

Algorithm

- Gibbs
- Recover
- RecoverL2
- RecoverKL

Algorithm

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

Algorithm

- Gibbs
- Recover
- RecoverL2
- RecoverKL

Algorithm

The previous algorithm was inspired by experiments!

Our first attempt used matrix inversion, which is noisy and unstable and can produce small negative values

METHODOLOGY:

We ran our algorithm on real and synthetic data:

- synthetic data: train an LDA model on 1100 NIPS abstracts, use this model to run experiments

Our algorithm is fifty times faster and performs nearly the same on all metrics we tried (I_1, log-likelihood, coherence,...) when compared to MALLET

- real data: UCI collection of 300,000 NYT articles, 10 minutes!

MY WORK ON LEARNING

computational geometry

LEARNING MIXTURES OF GAUSSIANS

Pearson (1896) and the Naples crabs:

- Can we infer the parameters of a mixture of Gaussians from random samples?
- Introduced the method of moments, but no provable guarantees

Image courtesy of Peter D. M. Macdonald. Used with permission.

Theorem [Kalai, Moitra, Valiant STOC'10, FOCS'10]: there is a polynomial time alg. to learn the parameters of a mixture of a constant number of Gaussians (even in high-dimensions)

This settles a long line of work starting with [Dasgupta, '99] that assumed negligible overlap. See also [Belkin, Sinha '10]

MY WORK ON LEARNING

computational geometry

MY WORK ON ALGORITHMS

Approximation Algorithms,
Metric Embeddings

Information Theory,
Communication Complexity

Combinatorics,
Smooth Analysis

$$
\mathrm{f}(\mathrm{x}+\mathrm{y}) \stackrel{?}{=} \mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})
$$

Any Questions?

Summary:

- Often optimization problems abstracted from learning are intractable!
- Are there new models that better capture the instances we actually want to solve in practice?
- These new models can lead to interesting theory questions and highly practical and new algorithms
- There are many exciting questions left to explore at the intersection of algorithms and learning

MIT OpenCourseWare
http://ocw.mit.edu

18.409 Algorithmic Aspects of Machine Learning

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

