Massachusetts Institute of Technology

2.111J/18.435J/ESD. 79

Quantum Computation

Problem 1. Find a circuit with $c n \log n$ gates that gives a good approximation to QFT on $n \square$ qubits. (c is a constant.)

Solution:

The circuit in Fig. 5.1 consists of $n(n+1) / 2$ gates. In order to find a circuit with $c n \log n$ gates, we approximate the operators $R_{j}=|0\rangle\langle 0|+\exp \left(2 \pi i / 2^{j}\right)|1\rangle\langle 1|$ by the identity operator for $j>k=c\left\lceil\log _{2} n\right\rceil$. Then, clearly the number of gates on each line of Fig. 5.1 is less than or equal to $c \log n$, and therefore, the total number of gates is on the order of $n \log n$. Now, we find the error due to this approximation. If we denote the operation by the ideal QFT circuit by U and our approximation by V, for any basis vector $|j\rangle$, from (5.9) and (5.18), we have

$$
\begin{gathered}
U|j\rangle=\frac{1}{2^{n / 2}} \bigotimes_{l=1}^{n}\left(|0\rangle+e^{2 \pi i j 2^{-l}}|1\rangle\right) \\
=\frac{1}{2^{n / 2}} \bigotimes_{l=1}^{k}\left(|0\rangle+e^{2 \pi i j 2^{-l}}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i 0 \cdot j_{n-k} \cdots j_{n-1} j_{n}}|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+e^{2 \pi i 0 . j_{1} \cdots j_{n}}|1\rangle\right) \\
=\frac{1}{2^{k / 2}} \bigotimes_{l=1}^{k}\left(|0\rangle+e^{2 \pi i 2^{2-l}}|1\rangle\right) \otimes\left|\phi_{k}\right\rangle \otimes \cdots \otimes\left|\phi_{n-1}\right\rangle
\end{gathered}
$$

where

$$
\left|\phi_{m}\right\rangle=\left(|0\rangle+e^{2 \pi i 0 . j_{n-m} \cdots j_{n-1} j_{n}}|1\rangle\right) / \sqrt{2}
$$

Also, using (5.13)-(5.18), it can be seen that our approximation acts as a truncating operator with the following action

$$
\begin{aligned}
V|j\rangle & =\frac{1}{2^{n / 2}} \bigotimes_{l=1}^{k}\left(|0\rangle+e^{2 \pi i 2^{-l}}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i 0 . j_{n-k} \cdots j_{n-1}}|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+e^{2 \pi i 0 \cdot j_{1} \cdots j_{k}}|1\rangle\right) \\
& =\frac{1}{2^{k / 2}} \bigotimes_{l=1}^{k}\left(|0\rangle+e^{2 \pi i j 2^{-l}}|1\rangle\right) \otimes\left|\nu_{k}\right\rangle \otimes \cdots \otimes\left|\nu_{n-1}\right\rangle
\end{aligned}
$$

where

$$
\left|\nu_{m}\right\rangle=\left(|0\rangle+e^{2 \pi i 0 . j_{n-m} \cdots j_{n-m+k-1}}|1\rangle\right) / \sqrt{2}
$$

Therefore, defining the error vector

$$
\left|\psi_{j}\right\rangle=(U-V)|j\rangle
$$

we have

$$
\begin{aligned}
\|(U-V)|j\rangle \|^{2} & =\left\langle\psi_{j} \mid \psi_{j}\right\rangle \\
& =\prod_{m=k}^{n-1}\left\langle\phi_{m} \mid \phi_{m}\right\rangle+\prod_{m=k}^{n-1}\left\langle\nu_{m} \mid \nu_{m}\right\rangle-2 \operatorname{Re} \prod_{m=k}^{n-1}\left\langle\nu_{m} \mid \phi_{m}\right\rangle
\end{aligned}
$$

but

$$
\left\langle\nu_{m} \mid \phi_{m}\right\rangle=\left(1+\exp \left(2 \pi i 0.00 \cdots 0 j_{n-m+k} \cdots j_{n}\right)\right) / 2
$$

where there are k zeros in the above exponent. This term has a very small phase for large n, and therefore

$$
\begin{aligned}
\operatorname{Re}\left\langle\nu_{m} \mid \phi_{m}\right\rangle & \geq \operatorname{Re}\left(1+\exp \left(2 \pi i / n^{c}\right)\right) / 2 \\
& \approx\left|1+e^{2 \pi i / n^{c}}\right| / 2 \quad \text { for } n \text { large } \\
& =\cos \left(\pi / n^{c}\right) \\
& \simeq\left(1-\pi^{2} / n^{2 c}\right)
\end{aligned}
$$

For the product term, the phase of each argument is on the order of π / n^{c}, therefore for $c \geq 2$, the phase of the product $\prod_{m=k}^{n-1}\left\langle\nu_{m} \mid \phi_{m}\right\rangle$ is less than π / n, and we can again approximate the real part by its magnitude to obtain:

$$
\begin{aligned}
\|(U-V)|j\rangle \|^{2} & \approx 2-2\left(1-\pi^{2} / n^{2 c}\right)^{n-k} \\
& \approx 2\left[1-\left(1-(n-k) \pi^{2} / n^{2 c}\right]\right. \\
& \approx 2 \pi^{2} / n^{2 c-1}
\end{aligned}
$$

which means that the error decreases inversely proportional to $n^{c-1 / 2}$.
Problem 2. Problem 5.6 in Nielsen and Chuang. Show how to do addition using Fourier transform and phase shift.

Solution:

From Problem Set 5, Problem 3, for $N=2^{n}$, we have

$$
U_{N}^{\dagger} R_{N} U_{N}=T_{N}
$$

where

$$
T_{N}=\sum_{x=0}^{N-1}|x+1 \bmod N\rangle\langle x|
$$

is the addition operator for $y=1$, and therefore

$$
\left(T_{N}\right)^{y}=U_{N}^{\dagger} R_{N} U_{N} U_{N}^{\dagger} R_{N} U_{N} \cdots U_{N}^{\dagger} R_{N} U_{N}=U_{N}^{\dagger}\left(R_{N}\right)^{y} U_{N}
$$

is the addition operator for any $y . U_{N}$ performs the quantum Fourier transform on n qubits, and $\left(R_{N}\right)^{y}=\sum_{x=0}^{N-1} \exp (2 \pi x y i / N)|x\rangle\langle x|$ can be constructed using n single-qubit phase shifts, one for each input qubit. The circuit for the k th qubit is as follows:

which takes $|x\rangle=\left|x_{1}\right\rangle \cdots\left|x_{n}\right\rangle$, for $x=x_{1} 2^{n-1}+x_{2} 2^{n-2}+\cdots+x_{n} 2^{0}$, to $\exp (2 \pi x y i / N)|x\rangle$ as desired. So in order to construct $\left(T_{N}\right)^{y}=U_{N}^{\dagger}\left(R_{N}\right)^{y} U_{N}$, we need $2\left(n^{2} / 2+2 n\right)$ operations for QFT and its inverse, and n operations for the phase shift, which results in $n^{2}+5 n$ operations.

Problem 3. In the Grover's algorithm, what is the probability of success after only one iteration if we are using two qubits (there are 4 possibilities) and there is only one right answer to the search problem. For the two-qubit system, the Grover's algorithm starts with $|\psi\rangle=|+\rangle \otimes|+\rangle$, and, in each iteration, we perform $(2|\psi\rangle\langle\psi|-I) O$, where O is the oracle operator that takes the right answer $|y\rangle$ to $-|y\rangle$ and leaves other states unchanged. The final measurement is in the computational basis.

Solution:

Each iteration of the Grover's algorithm rotates $|\psi\rangle$ by 2θ, where $\theta=\sin ^{-1}(\sqrt{M / N})=$ $\sin ^{-1}(\sqrt{1 / 4})=\pi / 6$, in the subspace spanned by the right answer vector and the superposition of wrong answer vectors. Because the initial phase of $|\psi\rangle$ in this plane is given by θ, after one iteration this angle becomes $\theta+2 \theta=\pi / 2$, which is exactly what the right answer represents. Hence, we get the right answer with probability one.

Problem 4. For $n=2^{k}$, we can use the following circuit, recursively, to build an n-qubitcontrolled U gate using only single-qubit-controlled U gates and Fredkin gates with reverse polarity. Explain how this circuit works, and find how many gates and work bits will be needed to construct the controlled U gate.

where the Fredkin gate with reverse polarity swaps the two input states if the control qubit is $|0\rangle$ and does nothing if it is $|1\rangle$.

Solution:

Let's refer to the first $\mathrm{n} / 2$ input qubits by the first register, and use the second register for the second half. Then, in order to prove that the above circuit acts the same as an n-qubit-controlled gate, we need to show that the above circuit does nothing unless all input qubits are $|1\rangle$. We consider the following cases:

1- If any of the qubits in the first register is $|0\rangle$, then one of the Fredkin gates becomes active and swaps the work bit $|0\rangle$ and one of the input qubits in the second register. Therefore, one of the control qubits of the $\mathrm{n} / 2$-qubit-controlled gate will be $|0\rangle$, and the whole circuit does nothing.
2- If all of all the qubits in the first register are $|1\rangle$, then none of the Fredkin gates is active, and therefore, if any of the qubits in the second register is $|0\rangle$, the $\mathrm{n} / 2$-qubit-controlled gate does nothing, and so does the whole circuit.
3- If all input qubits are $|1\rangle$, then none of the Fredkin gates is active, and we have all $|1\rangle$ at the input of the $\mathrm{n} / 2$-qubit-controlled gate. Hence, the whole circuit behaves as an n-qubitcontrolled gate.

Now that we know the given circuit is an n-qubit-controlled gate, we can use it again to construct the $\mathrm{n} / 2$-qubit-controlled gate using a single $\mathrm{n} / 4$-qubit-controlled gate, $\mathrm{n} / 2$ Fredkin gates, and one work qubit. We can continue this procedure until we get to a circuit with only one single-qubitcontrolled gate. This circuit consists of $n+n / 2+\cdots+2=2 n-2$ Fredkin gates, one single-qubit-controlled gate, and $k=\log n$ work qubits.

