Description

These problems are related to the material covered in Lectures 5-7. Your solutions are to be written up in latex (you can use the latex source for the problem set as a template) and submitted as a pdf-file with a filename of the form SurnamePset $3 . p d f$ via e-mail to the instructor by 5 pm on the due date. Collaboration is permitted, but you must identify your collaborators, and any references you consulted. If there are none, write Sources consulted: none at the top of your problem set.

The first person to spot each non-trivial typo/error in any of the problem sets or lecture notes will receive 1-5 points of extra credit.

Instructions: First do the warm up problems, then pick any combination of problems $1-5$ that sums to 99 points and write up your answers in latex. Finally, be sure to complete the survey problem 6.

Problem 0.

These are warm up problems that do not need to be written up or turned in.
(a) Prove Lemma 5.3, which states that the ramification index and residue degree are multiplicative in towers.
(b) Show that odd primes p split over $\mathbb{Q}(\sqrt{d})$ if and only if $x^{2}-d$ splits in $\mathbb{F}_{p}[x]$, but that this holds for $p=2$ only when $d \not \equiv 1 \bmod 4$. Then show that for $d \equiv 1 \bmod 4$ using $x^{2}-x+(1-d) / 4$ instead of $x^{2}-d$ works for every prime p.
(c) Let L / K be a finite Galois extension of number fields. Prove that if there exists an inert prime \mathfrak{p} of K then $\operatorname{Gal}(L / K)$ must be cyclic (the converse also holds - it follows from the Chebotarev density theorem, which we will see later in the course).
(d) Let L / K be a finite extension of number fields. Show that a prime \mathfrak{p} of K splits completely in L if and only if it splits completely in M, where M / K is the normal closure of L / K.

Problem 1. Factoring primes in cubic fields (33 points)

Let $K=\mathbb{Q}(\sqrt[3]{5})$.
(a) Prove that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt[3]{5}]$.
(b) Factor the primes $p=2,3,5,7,11,13$ in $\mathbb{Q}(\sqrt[3]{5})$. Write the prime ideals \mathfrak{q} appearing in your factorizations in the form $(p, f(\sqrt[3]{5}))$ where $f \in \mathbb{Z}[x]$ has degree at most 2 .
(c) Prove that the factorization patterns you found in (b) represent every possible case; that is, every possible sum $[K: \mathbb{Q}]=\sum_{\mathfrak{q} \mid(p)} e_{\mathfrak{q}} f_{\mathfrak{q}}$ that can arise for this particular field K. You should find that there is one numerically possible case that does not occur for $p \leq 13$; you need to prove that it cannot occur for any prime p.
(d) Find a different cubic field of the form $K=\mathbb{Q}(\sqrt[3]{n})$ for which the one factorization pattern missing from (c) actually does occur (demonstrate this explicitly).

Problem 2. Factoring primes in cyclotomic fields (33 points)

Let ℓ be a prime and let ζ_{ℓ} denote a primitive ℓ th root of unity.
(a) Prove that $\mathbb{Q}\left(\zeta_{\ell}\right) / \mathbb{Q}$ is a Galois extension.
(b) Prove that $\mathbb{Z}\left[\zeta_{\ell}\right]$ is the ring of integers of $\mathbb{Q}\left(\zeta_{\ell}\right)$.
(c) For each prime $p \neq \ell$, determine the number g_{p} of primes \mathfrak{q} of $\mathbb{Q}\left(\zeta_{\ell}\right)$ lying above (p), the ramification index e_{p} and the residue field degree f_{p} (your answer will depend on a relationship between p and ℓ that you need to determine).
(d) Do the same for $p=\ell$.

Problem 3. Non-monogenic fields (33 points)

Let A be a Dedekind domain with fraction field K, let L be a finite Galois extension of K, and let $L_{1}, L_{2} \subseteq L$ be subfields of L that are Galois over K and generate L.
(a) Let \mathfrak{p} be a prime of A and let $D_{\mathfrak{q}}$ be the decomposition group of a prime \mathfrak{q} above \mathfrak{p}. Prove that \mathfrak{p} splits completely in L / K if and only if $D_{\mathfrak{q}}$ is the trivial group.
(b) Prove that if \mathfrak{p} splits completely in L_{1} and L_{2} then \mathfrak{p} splits completely in L.
(c) Now assume $A=\mathbb{Z}, K=\mathbb{Q}$ and that L_{1} and L_{2} are distinct quadratic extensions of \mathbb{Q} in which 2 splits completely. Prove that that $\mathcal{O}_{L} \neq \mathbb{Z}[\alpha]$ for any $\alpha \in \mathcal{O}_{L}$.
(d) Assuming Dirichlet's theorem on primes in arithmetic progressions, show that there are infinitely many nonmonogenic bi-quadratic fields L and give three examples.

Problem 4. A relative extension without an integral basis (33 points)

Let K be the quadratic field $\mathbb{Q}(\sqrt{-6})$ with ring of integers $A=\mathbb{Z}[\sqrt{-6}]$, let $L:=K(\sqrt{-3})$ be a quadratic extension, and let B be the integral closure of A in L (so $A K L B$ holds).
(a) Show that, as an A-module, B is generated by $\left\{1, \sqrt{2}, \zeta_{3}\right\}$, where $\zeta_{3}=\frac{-1+\sqrt{-3}}{2}$; conclude that B is a torsion-free finitely generated A-module.
(b) Show that if B is a free A-module, then it is a free A-module of rank 2 .
(c) Show that if B is a free A-module of rank 2 , then $\left\{1, \zeta_{3}\right\}$ is an A-module basis for B (hint: show if $\left\{\beta_{1}, \beta_{2}\right\}$ is any A-module basis for B, then the matrix that expresses $\left\{1, \zeta_{3}\right\}$ in terms of this basis is invertible).
(d) Show that $\left\{1, \zeta_{3}\right\}$ is not an A-module basis for B by showing that you cannot write $\sqrt{2}$ in terms of this basis. Conclude that B is not a free A-module.
(e) Explain why (d) implies that the class group $\operatorname{cl}(A):=\mathcal{I}_{A} / \mathcal{P}_{A}$ must be non-trivial.
(f) Show that the A-module B is isomorphic to the A-module $I_{1} \oplus I_{2}$, where $I_{1}, I_{2} \in \mathcal{I}_{A}$ are the fractional A-ideals $I_{1}:=\left(\zeta_{3}\right)$ and $I_{2}:=\frac{1}{\sqrt{-3}}(3, \sqrt{-6})$.

Problem 5. Modules over Dedekind domains (66 points)

Let us recall some terminology from commutative algebra. Let A be a ring. A splitting of a surjective A-module homomorphism $\psi: N \rightarrow M$ is an A-module homomorphism $\phi: M \rightarrow N$ such that $\psi \circ \phi=1_{M}$; we then have

$$
N=\phi(M) \oplus \operatorname{ker}(\psi) \simeq M \oplus \operatorname{ker}(\psi) .
$$

An A-module M is projective if every $\psi: N \rightarrow M$ admits a splitting $\phi: M \rightarrow N$.
Now let A be a domain with fraction field K and let M be an A-module. An element $m \in M$ is torsion if there is a nonzero $a \in A$ for which $a m=0$. The torsion submodule $M_{\text {tors }}$ of M is the set of all torsion elements of M. We say that M is torsion if $M_{\text {tors }}=M$, and M is torsion free if $M_{\text {tors }}=0$ is the zero module, equivalently, the homomorphism $M \rightarrow M \otimes_{A} K$ sending m to $m \otimes 1$ is injective. Note that the zero module is both torsion and torsion free.

Now let A be a Dedekind domain with fraction field K.
(a) Prove that every finitely generated torsion A-module M is isomorphic to

$$
A / I_{1} \oplus \cdots \oplus A / I_{n},
$$

for some nonzero ideals I_{1}, \ldots, I_{n} of A (you may use the structure theorem for modules over PIDs).
(b) Prove that every fractional ideal I of A is a projective A-module.
(c) Prove that every finitely generated torsion-free A-module M is isomorphic to a finite direct sum of nonzero fractional ideals of A (elements of \mathcal{I}_{A}).
(d) Prove that every finitely generated A-module is isomorphic to the direct sum of a finitely generated torsion module and a finitely generated torsion-free module.
(e) Show that if M is a finitely generated torsion free A-module then $M \otimes_{A} K \simeq K^{n}$ for some $n \in \mathbb{Z}_{\geq 0}$.
(f) Let M be a finitely generated torsion-free A-module, and let us fix an isomorphism $\iota: M \otimes_{A} K \xrightarrow[\rightarrow]{\sim} K^{n}$ that embeds M in K^{n} via $m \mapsto \iota(m \otimes 1)$. Let N be the A submodule of K generated by the determinants of all $n \times n$ matrices whose columns lie in M. Prove that $N \in \mathcal{I}_{A}$ and that its ideal class (image in $\left.\operatorname{cl}(A):=\mathcal{I}_{A} / \mathcal{P}_{A}\right)$ is independent of ι; this is the Steinitz class of M.
(g) Prove that for any $I_{1}, \ldots, I_{n} \in \mathcal{I}_{A}$ the Steinitz class of $I_{1} \oplus \cdots \oplus I_{n}$ is the ideal class of the product $I_{1} \cdots I_{n}$.
(h) Prove that two finite direct sums $I_{1} \oplus \cdots \oplus I_{m}$ and $J_{1} \oplus \cdots \oplus J_{n}$ of elements of \mathcal{I}_{A} are isomorphic as A-modules if and only if $m=n$ and the ideal classes of $I_{1} \cdots I_{m}$ and $J_{1} \cdots J_{n}$ are equal.
(i) Prove that infinite direct sums $\bigoplus_{i=1}^{\infty} I_{i}$ and $\bigoplus_{j=1}^{\infty} J_{j}$ of elements of \mathcal{I}_{A} are always isomorphic as A-modules (hint: show that both are free A-modules of rank \aleph_{0}).

Problem 6. Survey (1 point)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 according to how interesting you found it ($1=$ "mind-numbing," $10=$ "mind-blowing"), and how difficult you found it ($1=$ "trivial," $10=$ "brutal"). Also estimate the amount of time you spent on each problem to the nearest half hour.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			
Problem 3			
Problem 4			
Problem 5			

Please rate each of the following lectures that you attended, according to the quality of the material ($1=$ "useless", $10=$ "fascinating"), the quality of the presentation ($1=$ "epic fail", $10=$ "perfection"), the pace ($1=$ "way too slow", $10=$ "way too fast", $5=$ "just right") and the novelty of the material to you ($1=$ "old hat", $10=$ "all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
$9 / 29$	Dedekind-Kummer, ideal norms				
$10 / 1$	Splitting in Galois extensions				

Please feel free to record any additional comments you have on the problem sets and the lectures, in particular, ways in which they might be improved.

MIT OpenCourseWare
http://ocw.mit.edu

18.785 Number Theory I

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

