13 The Minkowski bound, finiteness results

13.1 Lattices in real vector spaces

In Lecture 6 we defined the notion of an A-lattice in a finite dimensional K-vector space V as a finitely generated A-submodule of V that spans V as a K-vector space, where K is the fraction field of the domain A. In our usual $A K L B$ setup, A is a Dedekind domain, L is a finite separable extension of K, and the integral closure B of A in L is an A-lattice in the K-vector space $V=L$. When B is a free A-module, its rank is equal to the dimension of L as a K-vector space and it has an A-module basis that is also a K-basis for L.

We now want to specialize to the case $A=\mathbb{Z}$, and rather than taking $K=\mathbb{Q}$, we will instead use the archimedean completion \mathbb{R} of \mathbb{Q}. Since \mathbb{Z} is a PID, every finitely generated \mathbb{Z}-module in an \mathbb{R}-vector space V is a free \mathbb{Z}-module (since it is necessarily torsion free). We will restrict our attention to free \mathbb{Z}-modules with rank equal to the dimension of V (sometimes called a full lattice).

Definition 13.1. Let V be a real vector space of dimension n. A (full) lattice in V is a free \mathbb{Z}-module of the form $\Lambda:=e_{1} \mathbb{Z}+\cdots+e_{n} \mathbb{Z}$, where $\left(e_{1}, \ldots, e_{n}\right)$ is a basis for V.

Any real vector space V of dimension n is isomorphic to \mathbb{R}^{n}. By fixing an isomorphism, equivalently, choosing a basis for V that we identify with the standard basis for \mathbb{R}^{n}, we can equip V with an inner product $\langle\cdot, \cdot\rangle$ corresponding to the canonical inner product on \mathbb{R}^{n} (the standard dot product). This makes V into a normed vector space with the norm

$$
\|x\|:=\sqrt{\langle x, x\rangle} \in \mathbb{R}_{\geq 0}
$$

and also a metric space with distance metric

$$
d(x, y):=\|x-y\| .
$$

While the inner product $\langle\cdot, \cdot\rangle$ and distance metric $d(\cdot, \cdot)$ on V depend on our choice of basis (equivalently, the isomorphism $V \simeq \mathbb{R}^{n}$), the induced metric space topology does not; it is the same as the standard Euclidean topology on \mathbb{R}^{n}. The standard Lebesgue measure on \mathbb{R}^{n} is the unique Haar measure that assigns measure 1 to the unit cube $[0,1]^{n}$. This is consistent with Euclidean norm on \mathbb{R}^{n}, which assigns length 1 to the standard unit vectors. Having fixed an inner product $\langle\cdot, \cdot\rangle$ on $V \simeq \mathbb{R}^{n}$, we normalize the Haar measure on V so that the volume of a unit cube defined by any basis for V that is orthonormal with respect to $\langle\cdot, \cdot\rangle$ has measure 1 .

Recall that a subset S of a topological space X is discrete if every $s \in S$ lies in an open neighborhood $U \subseteq X$ that intersects S only at s.

Proposition 13.2. Let Λ be a subgroup of a real vector space V of finite dimension. Then Λ is a lattice if and only if Λ is discrete and V / Λ is compact (Λ is cocompact).

Proof. Suppose $\Lambda=e_{1} \mathbb{Z}+\cdots e_{n} \mathbb{Z}$ is a lattice; then e_{1}, \ldots, e_{n} is a basis for V. This basis determines an isomorphism $V \xrightarrow{\sim} \mathbb{R}^{n}$ of topological groups that sends Λ to $\mathbb{Z}^{n} \subseteq \mathbb{R}^{n}$. The subgroup $\mathbb{Z}^{n} \subseteq \mathbb{R}^{n}$ is clearly discrete and the quotient $\mathbb{R}^{n} / \mathbb{Z}^{n} \simeq \mathrm{U}(1)^{n}$ is clearly compact (here $\mathrm{U}(1)$ is the circle group).

For the converse, assume Λ is discrete and V / Λ is compact. Let W be the subspace of V spanned by Λ; the \mathbb{R}-vector space V / W cannot have positive dimension, since it is
contained in the compact space V / Λ, thus $W=\{0\}$ and Λ spans V. By picking an \mathbb{R}-basis for V in Λ we obtain an isomorphism $V \xrightarrow{\sim} \mathbb{R}^{n}$ that allows us to identify Λ with a subgroup of \mathbb{R}^{n} containing \mathbb{Z}^{n}. We claim that the index $\left[\Lambda: \mathbb{Z}^{n}\right]$ must be finite.

Proof of claim: choose an integer $r \geq 1$ so that the ball of radius $\epsilon=\sqrt{n} / r$ about 0 intersects Λ only at 0 ; this is possible because Λ is discrete. We now subdivide the 1 -cube in \mathbb{R}^{n} into $\frac{1}{2 r}$-cubes of which there are finitely many. If $\left[\Lambda: \mathbb{Z}^{n}\right]$ is infinite, then one of these $\frac{1}{2 r}$-cubes contains at least two (in fact, infinitely many) distinct elements $v, w \in \Lambda$, which must be separated by a distance that is strictly less than ϵ. But then $0<\|v-w\|<\epsilon$, which contradicts our choice of ϵ.

The claim implies that Λ is a finitely generated \mathbb{Z}-module, hence a free \mathbb{Z}-module (it is torsion free and \mathbb{Z} is a PID). It contains \mathbb{Z}^{n} with finite index so its rank is n.

Remark 13.3. One might ask why we are using the archimedean completion \mathbb{R} of \mathbb{Q} rather than some nonarchimedean completion \mathbb{Q}_{p} of \mathbb{Q}. The reason is that \mathbb{Z} is not a discrete subset of \mathbb{Q}_{p}; elements of \mathbb{Z} can be arbitrarily close to 0 under the p-adic metric.

As a locally compact group, $V \simeq \mathbb{R}^{n}$ has a Haar measure μ (see Definition 12.11). Any basis u_{1}, \ldots, u_{n} for V determines a parallelepiped

$$
F\left(u_{1}, \ldots, u_{n}\right):=\left\{a_{1} u_{1}+\cdots+a_{n} u_{n}: a_{1}, \ldots, a_{n} \in[0,1)\right\} .
$$

If we fix u_{1}, \ldots, u_{n} as our basis for $V \simeq \mathbb{R}^{n}$, we then normalize the Haar measure μ so that it agrees with the standard normalization on \mathbb{R}^{n} by defining $\mu\left(F\left(u_{1}, \ldots, u_{n}\right)\right)=1$.

For any other basis e_{1}, \ldots, e_{n} of V, if we let $E=\left[e_{i j}\right]$ be the matrix whose j th column expresses $e_{j}=\sum_{i} e_{i j} u_{i}$, in terms of our standard basis u_{1}, \ldots, u_{n}, then

$$
\begin{equation*}
\mu\left(F\left(e_{1}, \ldots, e_{n}\right)\right)=|\operatorname{det} E|=\sqrt{\operatorname{det} E^{t} \operatorname{det} E}=\sqrt{\operatorname{det}\left(E^{t} E\right)}=\sqrt{\operatorname{det}\left[\left\langle e_{i}, e_{j}\right\rangle\right]_{i j}} . \tag{1}
\end{equation*}
$$

This is precisely the factor by which we rescale μ if we switch to the basis e_{1}, \ldots, e_{n}.
Remark 13.4. If $T: V \rightarrow V$ is a linear transformation on a real vector space $V \simeq \mathbb{R}^{n}$ with Haar measures μ, then for any measurable set S we have

$$
\begin{equation*}
\mu(T(S))=|\operatorname{det} T| \mu(S) . \tag{2}
\end{equation*}
$$

This identity does not depend on a choice of basis; $\operatorname{det} T$ is the same regardless of which basis we use to compute it. It implies, in particular, that the absolute value of the determinant of any matrix in $\mathbb{R}^{n \times n}$ is equal to the volume of the parallelepiped spanned by its rows (or columns), a fact that we used above.

If Λ is a lattice $e_{1} \mathbb{Z}+\cdots+e_{n} \mathbb{Z}$ in V, the quotient space V / Λ is a compact group which we may identify with the parallelepiped $F\left(u_{1}, \ldots, u_{n}\right) \subset V$, which forms a set of unique coset representatives. More generally, we make the following definition.

Definition 13.5. Let Λ be a lattice in $V \simeq \mathbb{R}^{n}$. A fundamental domain for Λ is a measurable set $F \subseteq V$ such that

$$
V=\bigsqcup_{\lambda \in \Lambda}(F+\lambda) .
$$

In other words, F is a measurable set of unique coset representatives for V / Λ. Fundamental domains exist: if $\Lambda=e_{1} \mathbb{Z}+\cdots+e_{n} \mathbb{Z}$ we may take the parallelepiped $F\left(e_{1}, \ldots, e_{n}\right)$.

Proposition 13.6. Let Λ be a lattice in $V \simeq \mathbb{R}^{n}$ with Haar measure μ. Then $\mu(F)=\mu(G)$ for all fundamental domains F and G for Λ.

Proof. For $\lambda \in \Lambda$, the set $(F+\lambda) \cap G$ is the λ-translate of $F \cap(G-\lambda)$; these sets have the same measure since μ is translation-invariant. Partitioning F over translates of G yields

$$
\begin{aligned}
\mu(F) & =\mu\left(\bigsqcup_{\lambda \in \Lambda}(F \cap(G-\lambda))\right)=\sum_{\lambda \in \Lambda} \mu(F \cap(G-\lambda)) \\
& =\sum_{\lambda \in \Lambda} \mu((F+\lambda) \cap G)=\mu\left(\bigsqcup_{\lambda \in \Lambda}(G \cap(F+\lambda))\right)=\mu(G),
\end{aligned}
$$

where we have used the countable additivity of μ and the fact that $\Lambda \simeq \mathbb{Z}^{n}$ is countable.
Definition 13.7. Let Λ be a lattice in $V \simeq \mathbb{R}^{n}$ with Haar measure μ. The covolume $\operatorname{covol}(\Lambda)$ of Λ is the volume $\mu(F)$ of any fundamental domain F for Λ.

Remark 13.8. Note that volumes and covolumes depend on the normalization of the Haar measure μ, but ratios of them do not. In situations where we have a canonical way to choose an isomorphism $V \rightarrow \mathbb{R}^{n}$ (or $V \rightarrow \mathbb{C}^{n}$), such as when V is a number field (which is our main application), we normalize the Haar measure μ on V so that the inverse image of the unit cube in \mathbb{R}^{n} has unit volume in V.

Proposition 13.9. If $\Lambda^{\prime} \subseteq \Lambda$ are lattices in a real vector space V of finite dimension then

$$
\operatorname{covol}\left(\Lambda^{\prime}\right)=\left[\Lambda: \Lambda^{\prime}\right] \operatorname{covol}(\Lambda)
$$

Proof. Let F be a fundamental domain for Λ and let L be a set of unique coset representatives for $\Lambda / \Lambda^{\prime}$. Then L is finite (because Λ and Λ^{\prime} are both cocompact) and

$$
F^{\prime}:=\bigsqcup_{\lambda \in L}(F+\lambda)
$$

is a fundamental domain for Λ^{\prime}. Thus

$$
\operatorname{covol}\left(\Lambda^{\prime}\right)=\mu\left(F^{\prime}\right)=(\# L) \mu(F)=\left[\Lambda: \Lambda^{\prime}\right] \operatorname{covol}(\Lambda)
$$

Definition 13.10. Let S be a subset of a real vector space. The set S is symmetric if it is closed under negation, and it is convex if for every pair of points $x, y \in S$ the line segment $\{t x+(1-t) y: t \in[0,1]\}$ between them is contained in S.

Lemma 13.11. If $S \subseteq \mathbb{R}^{n}$ is a symmetric convex set of volume $\mu(S)>2^{n}$ then S contains a nonzero element of \mathbb{Z}^{n}.

Proof. See Problem Set 6.
Theorem 13.12 (Minkowski Lattice Point Theorem). Let Λ be a lattice in a real vector space $V \simeq \mathbb{R}^{n}$ with Haar measure μ. If $S \subseteq V$ is a symmetric convex set such that

$$
\mu(S)>2^{n} \operatorname{covol}(\Lambda)
$$

then S contains a nonzero element of Λ.

Proof. See Problem Set 6.
Example 13.13. As an application of the Minkowski lattice point theorem, let us prove Fermat's Christmas Theorem: an odd prime p is a sum of two integer squares $a^{2}+b^{2}$ if and only if $p \equiv 1 \bmod 4 . \frac{1}{2}$ The "only if" direction is easy: a^{2} and b^{2} must be congruent to 0 or $1 \bmod 4$, which implies that $a^{2}+b^{2}$ cannot be congruent to $3 \bmod 4$.

To prove the "if" direction, let $p \equiv 1 \bmod 4$ be prime. The cyclic group \mathbb{F}_{p}^{\times}has order $p-1$ divisible by 4 , so it contains an element α of order 4 whose square must be -1 , the unique element of order 2 in \mathbb{F}_{p}^{\times}. Let $i \in[1, p-1]$ be a lift of $\alpha \in \mathbb{F}_{p} \simeq \mathbb{Z} / p \mathbb{Z}$ to \mathbb{Z} and define

$$
\Lambda:=\left\{(x, y) \in \mathbb{Z}^{2}: y \equiv i x \bmod p\right\}
$$

so that $x^{2}+y^{2} \equiv(x+i y)(x-i y) \equiv 0 \bmod p$ for all $x, y \in \Lambda$. Then $\Lambda=(1, i) \mathbb{Z}+(0, p) \mathbb{Z}$ is a lattice in \mathbb{R}^{2} with covolume

$$
\operatorname{covol}(\Lambda)=\left|\operatorname{det}\left[\begin{array}{cc}
1 & i \\
0 & p
\end{array}\right]\right|=p
$$

The set

$$
S:=\left\{v \in \mathbb{R}^{2}:\|v\|<\sqrt{2 p}\right\}
$$

is a symmetric convex set in \mathbb{R}^{2} with measure $\mu(S)=2 \pi p>4 p=2^{2} \operatorname{covol}(\Lambda)$. By Corollary $13.12, S$ contains a nonzero $(a, b) \in \Lambda$. Then $a^{2}+b^{2} \equiv 0 \bmod p$, since $(a, b) \in \Lambda$ and $0<\bar{a}^{2}+b^{2}<2 p$, since (a, b) is a nonzero element of S; therefore $a^{2}+b^{2}=p$.

13.2 The canonical inner product

Let K / \mathbb{Q} be a number field with $K_{\mathbb{R}}:=K \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{R}^{r} \times \mathbb{C}^{s} \simeq \mathbb{R}^{n}$ and $K_{\mathbb{C}}:=K \otimes_{\mathbb{Q}} \mathbb{C} \simeq \mathbb{C}^{n}$ and $r+2 s=n$. We have a sequence of injective homomorphisms of topological groups

$$
\begin{equation*}
\mathcal{O}_{K} \hookrightarrow K \hookrightarrow K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}} \tag{3}
\end{equation*}
$$

which are defined as follows:

- the map $\mathcal{O}_{K} \hookrightarrow K$ is an inclusion;
- the map $K \hookrightarrow K_{\mathbb{R}}=K \otimes_{\mathbb{Q}} \mathbb{R}$ is the canonical embedding $\alpha \mapsto \alpha \otimes 1$;
- the map $K \hookrightarrow K_{\mathbb{C}}$ is $\alpha \mapsto\left(\sigma_{1}(\alpha), \ldots, \sigma_{n}(\alpha)\right)$, where $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$, which factors through the map $K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}}$ defined below;
- the map $K_{\mathbb{R}} \simeq \mathbb{R}^{r} \times \mathbb{C}^{s} \hookrightarrow \mathbb{C}^{r} \times \mathbb{C}^{2 s} \simeq K_{\mathbb{C}}$ embeds each factor of \mathbb{R}^{r} in a corresponding factor of \mathbb{C}^{r} via inclusion and each \mathbb{C} in \mathbb{C}^{s} is mapped to $\mathbb{C} \times \mathbb{C}$ in $\mathbb{C}^{2 s}$ via $z \mapsto(z, \bar{z})$.

To better understand the last map, note that each \mathbb{C} in \mathbb{C}^{s} arises as $\mathbb{R}[\alpha]=\mathbb{R}[x] /(f) \simeq \mathbb{C}$ for some monic irreducible $f \in \mathbb{R}[x]$ of degree 2 , but when we base-change to \mathbb{C} the field $\mathbb{R}[\alpha]$ splits into the étale algebra $\mathbb{C}[x] /(x-\alpha) \times \mathbb{C}[x] /(x-\bar{\alpha}) \simeq \mathbb{C} \times \mathbb{C}$.

If we fix a \mathbb{Z}-basis for \mathcal{O}_{K}, the image of this basis is a \mathbb{Q}-basis for K, an \mathbb{R}-basis for $K_{\mathbb{R}}$, and a \mathbb{C}-basis for $K_{\mathbb{C}}$, all of which are vector spaces of dimension $n=[K: \mathbb{Q}]$. We may thus view the injections in (3) as inclusions of topological groups

$$
\mathbb{Z}^{n} \hookrightarrow \mathbb{Q}^{n} \hookrightarrow \mathbb{R}^{n} \hookrightarrow \mathbb{C}^{n}
$$

[^0]The ring of integers \mathcal{O}_{K} is a lattice in $K_{\mathbb{R}} \simeq \mathbb{R}^{n}$, which inherits an inner product from the canonical Hermitian inner product on $K_{\mathbb{C}} \simeq \mathbb{C}^{n}$ defined by

$$
\left\langle\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right\rangle:=\sum_{i=1}^{n} a_{i} \bar{b}_{i} \in \mathbb{C} .
$$

For elements $x, y \in K \hookrightarrow K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}}$ the Hermitian inner product can be computed as

$$
\begin{equation*}
\langle x, y\rangle:=\sum_{\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})} \sigma(x) \overline{\sigma(y)} \in \mathbb{R}, \tag{4}
\end{equation*}
$$

which is a real number because the embeddings in $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$ are either real or complex conjugate pairs. The inner product defined in (4) is the canonical inner product on $K_{\mathbb{R}}$ (it applies to all of $K_{\mathbb{R}}$, not just the image of $K \hookrightarrow K_{\mathbb{R}}$). The topology it induces on $K_{\mathbb{R}}$ is the same as the Euclidean topology on $\mathbb{R}^{r} \times \mathbb{C}^{s}$, but the corresponding norm \|| \| has a different normalization, as we now explain.

If we write the elements of $K_{\mathbb{C}} \simeq \mathbb{C}^{n}$ as vectors $\left(z_{\sigma}\right)$ indexed by $\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$, we may identify $K_{\mathbb{R}}$ with its image in $K_{\mathbb{C}}$ as the set

$$
K_{\mathbb{R}}=\left\{\left(z_{\sigma}\right) \in K_{\mathbb{C}}: \bar{z}_{\sigma}=z_{\bar{\sigma}}\right\} .
$$

When $\sigma=\bar{\sigma}$ is a real embedding, $\bar{z}_{\sigma}=z_{\bar{\sigma}} \in \mathbb{R}$, while for pairs of conjugate complex embeddings $(\sigma, \bar{\sigma})$ we get the embedding $z \mapsto(z, \bar{z})$ of \mathbb{C} into $\mathbb{C} \times \mathbb{C}$ noted above. Each vector $\left(z_{\sigma}\right) \in K_{\mathbb{R}}$ can be written uniquely in the form

$$
\begin{equation*}
\left(w_{1}, \ldots, w_{r}, x_{1}+i y_{1}, x_{1}-i y_{1}, \ldots, x_{s}+i y_{s}, x_{s}-i y_{s}\right) \tag{5}
\end{equation*}
$$

with $w_{i}, y_{j}, z_{i} \in \mathbb{R}$, where each z_{i} corresponds to a z_{σ} with $\sigma=\bar{\sigma}$, and each $\left(x_{j}+i y_{j}, x_{j}-i y_{j}\right)$ corresponds to a complex conjugate pair $\left(z_{\sigma}, z_{\bar{\sigma}}\right)$ with $\sigma \neq \bar{\sigma}$. The canonical inner product then becomes

$$
\left\langle z, z^{\prime}\right\rangle=\sum_{i=1}^{r} w_{i} w_{i}^{\prime}+2 \sum_{j=1}^{s}\left(x_{j} x_{j}^{\prime}+y_{j} y_{j}^{\prime}\right)
$$

and if we normalize the Haar measure μ on $K_{\mathbb{R}}$ consistently we will have

$$
\mu(S)=2^{s} \mu_{\mathbb{R}^{n}}(S),
$$

where $\mu_{\mathbb{R}_{n}}$ denotes the standard Lebesgue measure on \mathbb{R}^{n}. Having fixed a normalization of the Haar measure on $K_{\mathbb{R}}$, we can compute the covolume of the lattice \mathcal{O}_{K} in $K_{\mathbb{R}}$.

13.3 Covolumes of ideals

Proposition 13.14. Let K be a number field with ring of integers \mathcal{O}_{K}. Then

$$
\operatorname{covol}\left(\mathcal{O}_{K}\right)=\sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|}
$$

Proof. Let $e_{1}, \ldots, e_{n} \in \mathcal{O}_{K}$ be a \mathbb{Z}-basis for \mathcal{O}_{K}, and let $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$. Let $A:=\left[\sigma_{i}\left(e_{j}\right)\right]_{i j} \in \mathbb{C}^{n \times n}$. Viewing $\mathcal{O}_{K} \hookrightarrow K_{\mathbb{R}}$ as a lattice in $K_{\mathbb{R}}$ with basis e_{1}, \ldots, e_{n}, using
(1) to compute $\operatorname{covol}\left(\mathcal{O}_{K}\right)^{2}=\mu\left(F\left(e_{1}, \ldots, e_{n}\right)\right)^{2}$ yields

$$
\begin{aligned}
\operatorname{covol}\left(\mathcal{O}_{K}\right)^{2} & =\operatorname{det}\left[\left\langle e_{i}, e_{j}\right\rangle\right]_{i, j} \\
& =\operatorname{det}\left[\sum_{k} \sigma_{k}\left(e_{i}\right) \overline{\sigma_{k}\left(e_{j}\right)}\right]_{i, j} \\
& =\operatorname{det}\left(\bar{A}^{\mathrm{t}} A\right) \\
& =\overline{\operatorname{det} A} \operatorname{det} A \\
& =|\operatorname{det} A|^{2},
\end{aligned}
$$

and by Proposition 11.13, $\left|\operatorname{disc} \mathcal{O}_{K}\right|=|\operatorname{det} A|^{2}=\operatorname{covol}\left(\mathcal{O}_{K}\right)^{2}$.
Recall from Remark 6.12 that for number fields K we view the absolute norm

$$
\begin{aligned}
N: \mathcal{I}_{\mathcal{O}_{K}} & \rightarrow \mathcal{I}_{\mathbb{Z}} \\
I & \mapsto\left(\mathcal{O}_{K}: I\right)_{\mathbb{Z}}
\end{aligned}
$$

as having image in $\mathbb{Q}_{>0}$ by identifying $N(I)=(x) \in \mathcal{I}_{\mathbb{Z}}$ with $|x| \in \mathbb{Q}_{>0}$. For ideals $I \subseteq \mathcal{O}_{K}$ this is just the positive integer $\left[\mathcal{O}_{K}: I\right]$; by definition, the norm $N(I)$ is the module index $\left(\mathcal{O}_{K}: I\right)_{\mathbb{Z}}$, and for $I \subseteq \mathcal{O}_{K}$ this is simply the \mathbb{Z}-ideal generated by $\left[\mathcal{O}_{K}: I\right]$.
Corollary 13.15. Let K be a number field and let I be a nonzero fractional ideal of \mathcal{O}_{K}. Then

$$
\operatorname{covol}(I)=\sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|} N(I)
$$

Proof. Let $n=[K: \mathbb{Q}]$. Since $\operatorname{covol}(b I)=b^{n} \operatorname{covol}(I)$ and $N(b I)=b^{n} N(I)$ for any $b \in \mathbb{Z}_{\geq 0}$, without loss of generality we may assume $I \subseteq \mathcal{O}_{K}$ (replace I with a suitable $b I$ if not). Applying Propositions 13.9 and $\underline{13.14}$, we have

$$
\operatorname{covol}(I)=\operatorname{covol}\left(\mathcal{O}_{K}\right)\left[\mathcal{O}_{K}: I\right]=\operatorname{covol}\left(\mathcal{O}_{K}\right) N(I)=\sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|} N(I)
$$

as claimed.

13.4 The Minkowski bound

Theorem 13.16 (Minkowski bound). Let K be a number field of degree $n=r+2 s$ with s complex embeddings. Define the Minkowski constant m_{K} for K as the positive real number

$$
m_{K}:=\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|} .
$$

For every nonzero fractional ideal I of \mathcal{O}_{K} there is a nonzero $a \in I$ for which

$$
\left|N_{K / \mathbb{Q}}(a)\right| \leq m_{K} N(I) .
$$

Before proving the theorem we first prove a lemma.
Lemma 13.17. Let K be a number field of degree $n=r+2 s$ with r real and s complex places. For each $t \in \mathbb{R}_{>0}$, the volume of the convex symmetric set

$$
S_{t}:=\left\{\left(z_{\sigma}\right) \in K_{\mathbb{R}}: \sum\left|z_{\sigma}\right| \leq t\right\} \subseteq K_{\mathbb{R}}
$$

with respect to the normalized Haar measure μ on $K_{\mathbb{R}}$ is

$$
\mu\left(S_{t}\right)=2^{r} \pi^{s} \frac{t^{n}}{n!}
$$

Proof. As in (5), we may uniquely write each $\left(z_{\sigma}\right) \in \mathcal{K}_{\mathbb{R}}$ in the form

$$
\left(w_{1}, \ldots, w_{r}, x_{1}+i y_{1}, x_{1}-i y_{1} \ldots, x_{s}+i y_{s}, x_{s}-i y_{s}\right)
$$

with $w_{i}, x_{j}, y_{j} \in \mathbb{R}$. We will have $\sum_{\sigma}\left|z_{\sigma}\right| \leq t$ if and only if

$$
\begin{equation*}
\sum_{i=1}^{r}\left|w_{i}\right|+\sum_{j=1}^{s} 2 \sqrt{\left|x_{j}\right|^{2}+\left|y_{j}\right|^{2}} \leq t \tag{6}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\mu\left(S_{t}\right)=2^{s} \mu_{\mathbb{R}^{n}}(V) \tag{7}
\end{equation*}
$$

where $V \subseteq \mathbb{R}^{n}$ is the region defined by (6) and $\mu_{\mathbb{R}^{n}}$ is the standard Lebesgue measure on \mathbb{R}^{n}. We now show that the volume of V is a scalar multiple of the volume of the set

$$
U:=\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}: \sum u_{i} \leq t \text { and } u_{i} \geq 0\right\} \subseteq \mathbb{R}^{n}
$$

which is $\mu_{\mathbb{R}^{n}}(U)=t^{n} / n!$ (the volume of the standard simplex in \mathbb{R}^{n} scaled by a factor of t).
If we view all the w_{i}, x_{j}, y_{j} as fixed except the last pair $\left(x_{s}, y_{s}\right)$, then $\left(x_{s}, y_{s}\right)$ ranges over a disk of some radius $d \in[0, t]$ determined by (6). If we replace (x_{s}, y_{s}) with (u_{n-1}, u_{n}) ranging over the triangular region bounded by $u_{n-1}+u_{n} \leq 2 d$ and $u_{n-1}, u_{n} \geq 0$, we need to incorporate a factor of $\pi / 2$ to account for the difference between $\left(2 d^{2}\right) / 2=2 d^{2}$ and πd^{2}; repeat this s times. Similarly, we now hold all but w_{r} fixed and replace w_{r} ranging over $[-d, d]$ with u_{r} ranging over $[0, d]$, and incorporate a factor of 2 to account for this change of variable; repeat r times. We then have

$$
\mu_{\mathbb{R}^{n}}(V)=2^{r-s} \pi^{s} \mu_{\mathbb{R}^{n}}(U)
$$

Plugging this into ($\left.\mathbf{7}^{(}\right)$and applying $\mu_{\mathbb{R}^{n}}(U)=t^{n} / n$! yields

$$
\mu\left(S_{t}\right)=2^{r} \pi^{s} \frac{t^{n}}{n!}
$$

as desired. This completes the proof of the lemma.
Proof of Theorem 13.16. Let I be a nonzero fractional ideal of \mathcal{O}_{K}. By Minkowski's Lattice Point Theorem (Corollary 13.12) and Corollary 13.15, if we choose t so that

$$
\mu\left(S_{t}\right)>2^{n} \operatorname{covol}(I)=2^{n} \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|} N(I)
$$

then S_{t} will contain a nonzero element $a \in I$ which must satisfy

$$
\sum_{\sigma}|\sigma(a)| \leq t
$$

where σ ranges over the n elements of $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$.
By Lemma 13.17, we want to choose t so that

$$
\mu\left(S_{t}\right)=2^{r} \pi^{s} \frac{t^{n}}{n!}>2^{n} \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|} N(I)
$$

equivalently,

$$
t^{n}>\frac{2^{n-r} n!}{\pi^{s}} \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|} N(I)=n!\left(\frac{4}{\pi}\right)^{s} \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|} N(I)=n^{n} m_{K} N(I)
$$

Let us now pick t so that $\left(\frac{t}{n}\right)^{n}>m_{K} N(I)$. Recalling that the geometric mean is bounded above by the arithmetic mean, we have

$$
\sqrt[n]{\left|N_{K / \mathbb{Q}}(a)\right|}=\sqrt[n]{\prod|\sigma(a)|} \leq \frac{1}{n} \sum|\sigma(a)|<\frac{t}{n},
$$

Thus $\left|N_{K / \mathbb{Q}}(a)\right|<\left(\frac{t}{n}\right)^{n}$. If we now take the limit as $\left(\frac{t}{n}\right)^{n} \rightarrow m_{K} N(I)$ from above, we obtain $\left|N_{K / \mathbb{Q}}(a)\right| \leq m_{K} N(I)$ as desired.

13.5 Finiteness of the ideal class group

Recall that the ideal class group $\operatorname{Pic} \mathcal{O}_{K}=\operatorname{cl} \mathcal{O}_{K}=\mathcal{I}_{K} / \mathcal{P}_{K}$ is the quotient of the ideal group \mathcal{I}_{K} of \mathcal{O}_{K} by its subgroup of principal fractional ideals \mathcal{P}_{K}.

We now use the Minkowski bound to prove that every ideal class contains a representative ideal of small norm. It will then follow that the ideal class group is finite.

Theorem 13.18. Let K be a number field. Every ideal class in $\operatorname{cl} \mathcal{O}_{K}$ contains an ideal $I \subseteq \mathcal{O}_{K}$ of absolute norm $N(I) \leq m_{K}$, where m_{K} is the Minkowski constant.

Proof. Let $[J]$ be an ideal class of \mathcal{O}_{K} represented by the nonzero fractional ideal J. By Theorem 13.16 , the ideal J^{-1} contains a nonzero element a for which

$$
\left|N_{K / \mathbb{Q}}(a)\right| \leq m_{K} N\left(J^{-1}\right)=m_{K} / N(J),
$$

and therefore $N(a J)=\left|N_{K / \mathbb{Q}}(a)\right| N(J) \leq m_{K}$. We have $a \in J^{-1}$, thus $a J \subseteq J^{-1} J=\mathcal{O}_{K}$ and $a J$ is an \mathcal{O}_{K}-ideal as desired.

Lemma 13.19. Let K be a number field and let M be a real number. The set of ideals $I \subseteq \mathcal{O}_{K}$ with $N(I) \leq M$ is finite.

Proof 1. As a lattice in $K_{\mathbb{R}} \simeq \mathbb{R}^{n}$, the additive group $\mathcal{O}_{K} \simeq \mathbb{Z}^{n}$ has only finitely many subgroups I of index m for each positive integer $m \leq M$, since

$$
(m \mathbb{Z})^{n} \subseteq I \subseteq \mathbb{Z}^{n}
$$

and $(m \mathbb{Z})^{n}$ has finite index $m^{n}=\left[\mathbb{Z}^{n}: m \mathbb{Z}^{n}\right]=[\mathbb{Z}: m \mathbb{Z}]^{n}$ in \mathbb{Z}^{n}.
Proof 2. Let I be an ideal of absolute norm $N(I) \leq M$ and let $I=\mathfrak{p}_{1} \cdots \mathfrak{p}_{k}$ be its factorization into (not necessarily distinct) prime ideals. Then $M \geq N(I)=N\left(\mathfrak{p}_{1}\right) \cdots N\left(\mathfrak{p}_{k}\right) \geq 2^{k}$, since the norm of each \mathfrak{p}_{i} is a prime power, and in particular at least 2. It follows that $k \leq \log _{2} M$ is bounded, independent of I. Each prime ideal \mathfrak{p} lies above some prime $p \leq M$, of which there are $\pi(M) \approx M / \log M$ (here $\pi(x)$ is the prime counting function), and for each prime p the number of primes $\mathfrak{p} \mid p$ is at most n. Thus there are at most $(n \pi(M))^{\log _{2} M}$ ideals of norm at most M, a finite number.

Theorem 13.20. Let K be a number field. The ideal class group of \mathcal{O}_{K} is finite.
Proof. By Theorem 13.18, each ideal class is represented by an ideal of norm at most m_{K}, and clearly distinct ideal classes must be represented by distinct ideals. By Lemma 13.19, the number of such ideals is finite.

Remark 13.21. For imaginary quadratic fields $K=\mathbb{Q}(\sqrt{-d})$ it is known that the class number $h_{K}=\# \operatorname{cl} \mathcal{O}_{K}$ tends to infinity as $d \rightarrow \infty$ ranges over square-free integers. This was conjectured by Gauss in his Disquisitiones Arithmeticae [2] and proved by Heilbronn [4] in 1934; the first fully explicit lower bound was obtained by Oesterlé in 1988 [5].

This implies that there are only a finite number of imaginary quadratic fields with any particular class number. It was conjectured by Gauss that there are exactly 9 imaginary quadratic fields with class number one, but this was not proved until the 20th century by Stark [6] and Heegner [3] $\stackrel{2}{2}$ Complete lists of imaginary quadratic fields for each class number $h_{K} \leq 100$ are now available [7].

The situation for real quadratic fields is quite different; it is generally believed that there are infinitely many real quadratic fields with class number $1 \underline{3}$

Corollary 13.22. Let K be a number field of degree n with s complex places. Then

$$
\left|\operatorname{disc} \mathcal{O}_{K}\right| \geq\left(\frac{n^{n}}{n!}\right)^{2}\left(\frac{\pi}{4}\right)^{2 s}>\frac{1}{2 \pi n}\left(\frac{\pi e^{2}}{4}\right)^{n}
$$

Proof. The absolute norm of an integral ideal is a positive integer, thus Theorem $\underline{13.18}$ implies $m_{K} \geq 1$. Therefore

$$
\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|} \geq 1
$$

The first lower bound on $\left|\operatorname{disc} \mathcal{O}_{K}\right|$ follows from the fact that $s \leq n / 2$, and the second follows form the fact

$$
n!\geq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

for all $n \geq 1$, by an explicit version of Stirling's approximation.
We note that $\pi e^{2} / 4>5.8$, so the minimum value of $\left|\operatorname{disc} \mathcal{O}_{K}\right|$ increases exponentially with $n=[K: \mathbb{Q}]$. The lower bounds for $n \in[2,7]$ given by the corollary are listed below, along with the least value of $\left|\operatorname{disc} \mathcal{O}_{K}\right|$ that actually occurs. As can be seen in the table, $\left|\operatorname{disc} \mathcal{O}_{K}\right|$ appears to grow substantially faster than the corollary suggests. Better lower bounds can be proved using more advanced techniques.

	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$	$n=7$
lower bound from Corollary 13.22	3	11	46	210	1014	5014
minimum value of \mid disc $\mathcal{O}_{K} \mid$	3	23	275	4511	92799	2306599

Corollary 13.23. If K is a number field other than \mathbb{Q} then $\left|\operatorname{disc} \mathcal{O}_{K}\right|>1$. In particular, there is no non-trivial unramified extension of \mathbb{Q}.

Proposition 13.24. For $M \in \mathbb{R}_{>0}$ the set of number fields K with $\left|\operatorname{disc} \mathcal{O}_{K}\right|<M$ is finite.
Proof. Since we know that $\left|\operatorname{disc} \mathcal{O}_{K}\right| \rightarrow \infty$ as $n \rightarrow \infty$, it suffices to prove this for each fixed degree $n=[K: \mathbb{Q}]$.

Case 1: Let K be a totally real field (so every place $v \mid \infty$ is real) with $\left|\operatorname{disc} \mathcal{O}_{K}\right|<M$. Then $r=n$ and $s=0$, so $K_{\mathbb{R}} \simeq \mathbb{R}^{r} \times \mathbb{C}^{s}=\mathbb{R}^{n}$. Consider the convex symmetric set

$$
S:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in K_{\mathbb{R}} \simeq \mathbb{R}^{n}:\left|x_{1}\right| \leq \sqrt{M} \text { and }\left|x_{i}\right|<1 \text { for } i>1\right\} .
$$

[^1]Then

$$
\mu(S)=2 \sqrt{M} 2^{n-1}=2^{n} \sqrt{M}>2^{n} \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|}=2^{n} \operatorname{covol}\left(\mathcal{O}_{K}\right),
$$

and by the Minkowski lattice point theorem (Corollary 13.12), S contains a nonzero element $a \in \mathcal{O}_{K} \subseteq K \hookrightarrow K_{\mathbb{R}}$ that we may write as $a=\left(a_{\sigma}\right)=\left(\sigma_{1}(a), \ldots, \sigma_{n}(a)\right)$, where the σ_{i} are the n embeddings of K into \mathbb{C}, all of which are real embeddings. We have

$$
\left|N_{K / \mathbb{Q}}(a)\right|=\left|\prod_{i=1} \sigma_{i}(a)\right| \in \mathbb{Z}_{>0}
$$

which must be at least 1 , and $\left|a_{2}\right|, \ldots,\left|a_{n}\right|<1$ so $\left|a_{1}\right|>1>\left|a_{i}\right|$ for $i=2, \ldots, n$.
We now claim that $K=\mathbb{Q}(a)$. If not, each $a_{i}=\sigma_{i}(a)$ would be repeated $[K: \mathbb{Q}(a)]>1$ times in the vector $\left(a_{1}, \ldots, a_{n}\right)$, since there must be $[K: \mathbb{Q}(a)]$ elements of $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$ that fix $\mathbb{Q}(a)$, namely, those lying in the kernel of the map $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C}) \rightarrow \operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}(a), \mathbb{C})$ induced by restriction. But this is impossible since $\left|a_{1}\right|>\left|a_{i}\right|$ for $i \neq 1$.

Now $a \in \mathcal{O}_{K}$, so its minimal polynomial is a monic irreducible polynomial $f \in \mathbb{Z}[x]$ of degree n. The roots of $f(x)$ correspond to the $a_{i}=\sigma_{i}(a) \in \mathbb{R}$ which are all bounded in absolute value; and the coefficients of $f(x)$ are the elementary symmetric functions of the roots, hence also bounded in absolute value. The coefficients of f are integers, so there are only finitely many possibilities for $f(x)$, given the bound M, hence only finitely many totally real number fields K of degree n.

Case 2: K has r real and $s>0$ complex places, where $n=r+2 s$ and $K_{\mathbb{R}} \simeq \mathbb{R}^{r} \times \mathbb{C}^{s}$. Now let
$S:=\left\{\left(w_{1}, \ldots, w_{r}, x_{1}+i y_{1}, \ldots, x_{s}+i y_{s}\right) \in K_{\mathbb{R}}:\left|x_{1}\right|<c \sqrt{M}\right.$ and $\left.\left|w_{i}\right|,\left|x_{j}\right|,\left|y_{k}\right|<1(j \neq 1)\right\}$
with c chosen so that $\mu(S)>2^{n} \operatorname{covol}\left(\mathcal{O}_{K}\right)$ (the exact value of c depends on n but clearly this can be done). The argument now proceeds as in case 1: we get a nonzero $a \in \mathcal{O}_{K} \cap S$ with $K=\mathbb{Q}(a)$, and only a finite number of possible minimal polynomials $f \in \mathbb{Z}[x]$ for a.

Lemma 13.25. Let K be a number field of degree n. For each prime $p \in \mathbb{Z}$ we have

$$
v_{p}\left(\operatorname{disc} \mathcal{O}_{K}\right) \leq n\left(\log _{p} n+1\right)-1
$$

In particular, $v_{p}\left(\operatorname{disc} \mathcal{O}_{K}\right) \leq n\left(\log _{2} n+1\right)-1$ for all primes $p \in \mathbb{Z}$.
Proof. We have

$$
\left|\operatorname{disc} \mathcal{O}_{K}\right|_{p}=\left|N_{K / \mathbb{Q}}\left(\mathcal{D}_{K / \mathbb{Q}}\right)\right|_{p}=\prod_{v \mid p}\left|\mathcal{D}_{K_{v} / \mathbb{Q}_{p}}\right| v
$$

where $\mathcal{D}_{K_{v} / \mathbb{Q}_{p}}$ denotes the different ideal. It follows from Theorem $\underline{12.8}$ that

$$
v_{p}\left(\operatorname{disc} \mathcal{O}_{K}\right) \leq \sum_{v \mid p}\left(e_{v}-1+e_{v} v_{p}\left(e_{v}\right)\right)
$$

where e_{v} is the ramification index of K_{v} / \mathbb{Q}_{p}. We have $\sum_{v \mid p} e_{v} \leq n$, and $v_{p}\left(e_{v}\right)$ cannot exceed $\log _{p}(n)$, so

$$
v_{p}\left(\operatorname{disc} \mathcal{O}_{K}\right) \leq n\left(\log _{p} n+1\right)-1
$$

as claimed.
Remark 13.26. The bound in Lemma $\underline{13.25}$ is tight. It is achieved by $K=\mathbb{Q}[x] /\left(x^{p^{e}}-p\right)$, for example.

Theorem 13.27 (Hermite). Let S be a finite set of places of \mathbb{Q}, and let $n \in \mathbb{Z}_{>1}$. The number of extensions K / \mathbb{Q} of degree n unramified outside of S is finite.

Proof. By the lemma, since n is fixed, the valuation $v_{p}\left(\operatorname{disc} \mathcal{O}_{K}\right)$ is bounded for each $p \in S$, so $\left|\operatorname{disc} \mathcal{O}_{K}\right|$ is bounded. The theorem then follows from Proposition $\underline{13.24}$.

References

[1] Henri Cohen and Hendrik W. Lenstra Jr., Heuristics on class groups of number fields, in Number Theory (Noordwijkerhout 1983), Lecture Notes in Mathematics 1068, Springer, 1984, 33-62.
[2] Carl F. Gauss, Disquisitiones Arithmeticae, Göttingen (1801), English translation by Arthur A. Clark, revised by William C. Waterhouse, Spring-Verlag 1986 reprint of Yale University Press 1966 edition.
[3] Kurt Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227253.
[4] Hans Heilbronn, On the class number in imaginary quadratic fields, Quart. J. of Math. Oxford 5 (1934), 150-160.
[5] Joseph Oesterlé, La probléme de Gauss sur le nombre de classes, Enseign. Math. 34 (1988), 43-67.
[6] Harold Stark, A complete determination of the complex quadratic fields of class-number one, Mich. Math. J. 14 (1967), 1-27.
[7] Mark Watkins, Class numbers of imaginary quadratic fields, Math. Comp. 73 (2004), 907-938.

MIT OpenCourseWare
http://ocw.mit.edu

18.785 Number Theory I

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ In a letter from Fermat to Mersenne dated December 25, 1640 (whence the name) Fermat claimed a proof of this theorem; as usual, he did not actually supply one, but in this case he almost certainly had one.

[^1]: ${ }^{2}$ Heegner's 1952 result [3] was essentially correct but contained some gaps that prevented it from being generally accepted until 1967 when Stark gave a complete proof in [6].
 ${ }^{3}$ In fact it is conjectured that $h_{K}=1$ for approximately 75.446% of real quadratic fields with prime discriminant; this follows from the Cohen-Lenstra heuristics [1].

