13 The Minkowski bound, finiteness results

13.1 Lattices in real vector spaces

In Lecture 6 we defined the notion of an A-lattice in a finite dimensional K-vector space V as a finitely generated A-submodule of V that spans V as a K-vector space, where K is the fraction field of the domain A. In our usual AKLB setup, A is a Dedekind domain, L is a finite separable extension of K, and the integral closure B of A in L is an A-lattice in the K-vector space V = L. When B is a free A-module, its rank is equal to the dimension of L as a K-vector space and it has an A-module basis that is also a K-basis for L.

We now want to specialize to the case $A = \mathbb{Z}$, and rather than taking $K = \mathbb{Q}$, we will instead use the archimedean completion \mathbb{R} of \mathbb{Q} . Since \mathbb{Z} is a PID, every finitely generated \mathbb{Z} -module in an \mathbb{R} -vector space V is a free \mathbb{Z} -module (since it is necessarily torsion free). We will restrict our attention to free \mathbb{Z} -modules with rank equal to the dimension of V (sometimes called a *full lattice*).

Definition 13.1. Let V be a real vector space of dimension n. A (full) *lattice* in V is a free \mathbb{Z} -module of the form $\Lambda := e_1\mathbb{Z} + \cdots + e_n\mathbb{Z}$, where (e_1, \ldots, e_n) is a basis for V.

Any real vector space V of dimension n is isomorphic to \mathbb{R}^n . By fixing an isomorphism, equivalently, choosing a basis for V that we identify with the standard basis for \mathbb{R}^n , we can equip V with an inner product $\langle \cdot, \cdot \rangle$ corresponding to the canonical inner product on \mathbb{R}^n (the standard dot product). This makes V into a normed vector space with the norm

$$||x|| := \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0},$$

and also a metric space with distance metric

$$d(x, y) := ||x - y||.$$

While the inner product $\langle \cdot, \cdot \rangle$ and distance metric $d(\cdot, \cdot)$ on V depend on our choice of basis (equivalently, the isomorphism $V \simeq \mathbb{R}^n$), the induced metric space topology does not; it is the same as the standard Euclidean topology on \mathbb{R}^n . The standard Lebesgue measure on \mathbb{R}^n is the unique Haar measure that assigns measure 1 to the unit cube $[0,1]^n$. This is consistent with Euclidean norm on \mathbb{R}^n , which assigns length 1 to the standard unit vectors. Having fixed an inner product $\langle \cdot, \cdot \rangle$ on $V \simeq \mathbb{R}^n$, we normalize the Haar measure on V so that the volume of a unit cube defined by any basis for V that is orthonormal with respect to $\langle \cdot, \cdot \rangle$ has measure 1.

Recall that a subset S of a topological space X is discrete if every $s \in S$ lies in an open neighborhood $U \subseteq X$ that intersects S only at s.

Proposition 13.2. Let Λ be a subgroup of a real vector space V of finite dimension. Then Λ is a lattice if and only if Λ is discrete and V/Λ is compact (Λ is cocompact).

Proof. Suppose $\Lambda = e_1 \mathbb{Z} + \cdots e_n \mathbb{Z}$ is a lattice; then e_1, \ldots, e_n is a basis for V. This basis determines an isomorphism $V \xrightarrow{\sim} \mathbb{R}^n$ of topological groups that sends Λ to $\mathbb{Z}^n \subseteq \mathbb{R}^n$. The subgroup $\mathbb{Z}^n \subseteq \mathbb{R}^n$ is clearly discrete and the quotient $\mathbb{R}^n/\mathbb{Z}^n \simeq \mathrm{U}(1)^n$ is clearly compact (here $\mathrm{U}(1)$ is the circle group).

For the converse, assume Λ is discrete and V/Λ is compact. Let W be the subspace of V spanned by Λ ; the \mathbb{R} -vector space V/W cannot have positive dimension, since it is

contained in the compact space V/Λ , thus $W = \{0\}$ and Λ spans V. By picking an \mathbb{R} -basis for V in Λ we obtain an isomorphism $V \stackrel{\sim}{\longrightarrow} \mathbb{R}^n$ that allows us to identify Λ with a subgroup of \mathbb{R}^n containing \mathbb{Z}^n . We claim that the index $[\Lambda : \mathbb{Z}^n]$ must be finite.

Proof of claim: choose an integer $r \geq 1$ so that the ball of radius $\epsilon = \sqrt{n}/r$ about 0 intersects Λ only at 0; this is possible because Λ is discrete. We now subdivide the 1-cube in \mathbb{R}^n into $\frac{1}{2r}$ -cubes of which there are finitely many. If $[\Lambda:\mathbb{Z}^n]$ is infinite, then one of these $\frac{1}{2r}$ -cubes contains at least two (in fact, infinitely many) distinct elements $v, w \in \Lambda$, which must be separated by a distance that is strictly less than ϵ . But then $0 < ||v - w|| < \epsilon$, which contradicts our choice of ϵ .

The claim implies that Λ is a finitely generated \mathbb{Z} -module, hence a free \mathbb{Z} -module (it is torsion free and \mathbb{Z} is a PID). It contains \mathbb{Z}^n with finite index so its rank is n.

Remark 13.3. One might ask why we are using the archimedean completion \mathbb{R} of \mathbb{Q} rather than some nonarchimedean completion \mathbb{Q}_p of \mathbb{Q} . The reason is that \mathbb{Z} is not a discrete subset of \mathbb{Q}_p ; elements of \mathbb{Z} can be arbitrarily close to 0 under the p-adic metric.

As a locally compact group, $V \simeq \mathbb{R}^n$ has a Haar measure μ (see Definition 12.11). Any basis u_1, \ldots, u_n for V determines a parallelepiped

$$F(u_1,\ldots,u_n) := \{a_1u_1 + \cdots + a_nu_n : a_1,\ldots,a_n \in [0,1)\}.$$

If we fix u_1, \ldots, u_n as our basis for $V \simeq \mathbb{R}^n$, we then normalize the Haar measure μ so that it agrees with the standard normalization on \mathbb{R}^n by defining $\mu(F(u_1, \ldots, u_n)) = 1$.

For any other basis e_1, \ldots, e_n of V, if we let $E = [e_{ij}]$ be the matrix whose jth column expresses $e_j = \sum_i e_{ij} u_i$, in terms of our standard basis u_1, \ldots, u_n , then

$$\mu(F(e_1, \dots, e_n)) = |\det E| = \sqrt{\det E^t \det E} = \sqrt{\det(E^t E)} = \sqrt{\det[\langle e_i, e_j \rangle]_{ij}}.$$
 (1)

This is precisely the factor by which we rescale μ if we switch to the basis e_1, \ldots, e_n .

Remark 13.4. If $T: V \to V$ is a linear transformation on a real vector space $V \simeq \mathbb{R}^n$ with Haar measures μ , then for any measurable set S we have

$$\mu(T(S)) = |\det T| \,\mu(S). \tag{2}$$

This identity does not depend on a choice of basis; det T is the same regardless of which basis we use to compute it. It implies, in particular, that the absolute value of the determinant of any matrix in $\mathbb{R}^{n\times n}$ is equal to the volume of the parallelepiped spanned by its rows (or columns), a fact that we used above.

If Λ is a lattice $e_1\mathbb{Z} + \cdots + e_n\mathbb{Z}$ in V, the quotient space V/Λ is a compact group which we may identify with the parallelepiped $F(u_1, \ldots, u_n) \subset V$, which forms a set of unique coset representatives. More generally, we make the following definition.

Definition 13.5. Let Λ be a lattice in $V \simeq \mathbb{R}^n$. A fundamental domain for Λ is a measurable set $F \subseteq V$ such that

$$V = \bigsqcup_{\lambda \in \Lambda} (F + \lambda).$$

In other words, F is a measurable set of unique coset representatives for V/Λ . Fundamental domains exist: if $\Lambda = e_1\mathbb{Z} + \cdots + e_n\mathbb{Z}$ we may take the parallelepiped $F(e_1, \ldots, e_n)$.

Proposition 13.6. Let Λ be a lattice in $V \simeq \mathbb{R}^n$ with Haar measure μ . Then $\mu(F) = \mu(G)$ for all fundamental domains F and G for Λ .

Proof. For $\lambda \in \Lambda$, the set $(F + \lambda) \cap G$ is the λ -translate of $F \cap (G - \lambda)$; these sets have the same measure since μ is translation-invariant. Partitioning F over translates of G yields

$$\mu(F) = \mu\left(\bigsqcup_{\lambda \in \Lambda} (F \cap (G - \lambda))\right) = \sum_{\lambda \in \Lambda} \mu(F \cap (G - \lambda))$$
$$= \sum_{\lambda \in \Lambda} \mu((F + \lambda) \cap G) = \mu\left(\bigsqcup_{\lambda \in \Lambda} (G \cap (F + \lambda))\right) = \mu(G),$$

where we have used the countable additivity of μ and the fact that $\Lambda \simeq \mathbb{Z}^n$ is countable. \square

Definition 13.7. Let Λ be a lattice in $V \simeq \mathbb{R}^n$ with Haar measure μ . The *covolume* $\operatorname{covol}(\Lambda)$ of Λ is the volume $\mu(F)$ of any fundamental domain F for Λ .

Remark 13.8. Note that volumes and covolumes depend on the normalization of the Haar measure μ , but ratios of them do not. In situations where we have a canonical way to choose an isomorphism $V \to \mathbb{R}^n$ (or $V \to \mathbb{C}^n$), such as when V is a number field (which is our main application), we normalize the Haar measure μ on V so that the inverse image of the unit cube in \mathbb{R}^n has unit volume in V.

Proposition 13.9. If $\Lambda' \subseteq \Lambda$ are lattices in a real vector space V of finite dimension then

$$\operatorname{covol}(\Lambda') = [\Lambda : \Lambda'] \operatorname{covol}(\Lambda)$$

Proof. Let F be a fundamental domain for Λ and let L be a set of unique coset representatives for Λ/Λ' . Then L is finite (because Λ and Λ' are both cocompact) and

$$F' := \bigsqcup_{\lambda \in L} (F + \lambda)$$

is a fundamental domain for Λ' . Thus

$$\operatorname{covol}(\Lambda') = \mu(F') = (\#L)\mu(F) = [\Lambda : \Lambda'] \operatorname{covol}(\Lambda).$$

Definition 13.10. Let S be a subset of a real vector space. The set S is *symmetric* if it is closed under negation, and it is *convex* if for every pair of points $x, y \in S$ the line segment $\{tx + (1-t)y : t \in [0,1]\}$ between them is contained in S.

Lemma 13.11. If $S \subseteq \mathbb{R}^n$ is a symmetric convex set of volume $\mu(S) > 2^n$ then S contains a nonzero element of \mathbb{Z}^n .

Proof. See Problem Set 6.
$$\Box$$

Theorem 13.12 (MINKOWSKI LATTICE POINT THEOREM). Let Λ be a lattice in a real vector space $V \simeq \mathbb{R}^n$ with Haar measure μ . If $S \subseteq V$ is a symmetric convex set such that

$$\mu(S) > 2^n \operatorname{covol}(\Lambda)$$

then S contains a nonzero element of Λ .

Example 13.13. As an application of the Minkowski lattice point theorem, let us prove FERMAT'S CHRISTMAS THEOREM: an odd prime p is a sum of two integer squares $a^2 + b^2$ if and only if $p \equiv 1 \mod 4$. The "only if" direction is easy: a^2 and b^2 must be congruent to 0 or 1 mod 4, which implies that $a^2 + b^2$ cannot be congruent to 3 mod 4.

To prove the "if" direction, let $p \equiv 1 \mod 4$ be prime. The cyclic group \mathbb{F}_p^{\times} has order p-1 divisible by 4, so it contains an element α of order 4 whose square must be -1, the unique element of order 2 in \mathbb{F}_p^{\times} . Let $i \in [1, p-1]$ be a lift of $\alpha \in \mathbb{F}_p \simeq \mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z} and define

$$\Lambda := \{ (x, y) \in \mathbb{Z}^2 : y \equiv ix \bmod p \},\,$$

so that $x^2 + y^2 \equiv (x + iy)(x - iy) \equiv 0 \mod p$ for all $x, y \in \Lambda$. Then $\Lambda = (1, i)\mathbb{Z} + (0, p)\mathbb{Z}$ is a lattice in \mathbb{R}^2 with covolume

$$\operatorname{covol}(\Lambda) = \left| \det \begin{bmatrix} 1 & i \\ 0 & p \end{bmatrix} \right| = p.$$

The set

$$S := \{ v \in \mathbb{R}^2 : ||v|| < \sqrt{2p} \},$$

is a symmetric convex set in \mathbb{R}^2 with measure $\mu(S) = 2\pi p > 4p = 2^2 \operatorname{covol}(\Lambda)$. By Corollary 13.12, S contains a nonzero $(a,b) \in \Lambda$. Then $a^2 + b^2 \equiv 0 \mod p$, since $(a,b) \in \Lambda$ and $0 < a^2 + b^2 < 2p$, since (a,b) is a nonzero element of S; therefore $a^2 + b^2 = p$.

13.2 The canonical inner product

Let K/\mathbb{Q} be a number field with $K_{\mathbb{R}} := K \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{R}^r \times \mathbb{C}^s \simeq \mathbb{R}^n$ and $K_{\mathbb{C}} := K \otimes_{\mathbb{Q}} \mathbb{C} \simeq \mathbb{C}^n$ and r + 2s = n. We have a sequence of injective homomorphisms of topological groups

$$\mathcal{O}_K \hookrightarrow K \hookrightarrow K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}},$$
 (3)

which are defined as follows:

- the map $\mathcal{O}_K \hookrightarrow K$ is an inclusion;
- the map $K \hookrightarrow K_{\mathbb{R}} = K \otimes_{\mathbb{Q}} \mathbb{R}$ is the canonical embedding $\alpha \mapsto \alpha \otimes 1$;
- the map $K \hookrightarrow K_{\mathbb{C}}$ is $\alpha \mapsto (\sigma_1(\alpha), \dots, \sigma_n(\alpha))$, where $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C}) = \{\sigma_1, \dots, \sigma_n\}$, which factors through the map $K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}}$ defined below;
- the map $K_{\mathbb{R}} \simeq \mathbb{R}^r \times \mathbb{C}^s \hookrightarrow \mathbb{C}^r \times \mathbb{C}^{2s} \simeq K_{\mathbb{C}}$ embeds each factor of \mathbb{R}^r in a corresponding factor of \mathbb{C}^r via inclusion and each \mathbb{C} in \mathbb{C}^s is mapped to $\mathbb{C} \times \mathbb{C}$ in \mathbb{C}^{2s} via $z \mapsto (z, \bar{z})$.

To better understand the last map, note that each \mathbb{C} in \mathbb{C}^s arises as $\mathbb{R}[\alpha] = \mathbb{R}[x]/(f) \simeq \mathbb{C}$ for some monic irreducible $f \in \mathbb{R}[x]$ of degree 2, but when we base-change to \mathbb{C} the field $\mathbb{R}[\alpha]$ splits into the étale algebra $\mathbb{C}[x]/(x-\alpha) \times \mathbb{C}[x]/(x-\bar{\alpha}) \simeq \mathbb{C} \times \mathbb{C}$.

If we fix a \mathbb{Z} -basis for \mathcal{O}_K , the image of this basis is a \mathbb{Q} -basis for K, an \mathbb{R} -basis for $K_{\mathbb{Q}}$, and a \mathbb{C} -basis for $K_{\mathbb{C}}$, all of which are vector spaces of dimension $n = [K : \mathbb{Q}]$. We may thus view the injections in (3) as inclusions of topological groups

$$\mathbb{Z}^n \hookrightarrow \mathbb{O}^n \hookrightarrow \mathbb{R}^n \hookrightarrow \mathbb{C}^n$$
.

¹In a letter from Fermat to Mersenne dated December 25, 1640 (whence the name) Fermat claimed a proof of this theorem; as usual, he did not actually supply one, but in this case he almost certainly had one.

The ring of integers \mathcal{O}_K is a lattice in $K_{\mathbb{R}} \simeq \mathbb{R}^n$, which inherits an inner product from the canonical Hermitian inner product on $K_{\mathbb{C}} \simeq \mathbb{C}^n$ defined by

$$\langle (a_1,\ldots,a_n),(b_1,\ldots,b_n)\rangle := \sum_{i=1}^n a_i \bar{b}_i \in \mathbb{C}.$$

For elements $x, y \in K \hookrightarrow K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}}$ the Hermitian inner product can be computed as

$$\langle x, y \rangle := \sum_{\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})} \sigma(x) \overline{\sigma(y)} \in \mathbb{R},$$
 (4)

which is a real number because the embeddings in $\operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C})$ are either real or complex conjugate pairs. The inner product defined in (4) is the *canonical inner product* on $K_{\mathbb{R}}$ (it applies to all of $K_{\mathbb{R}}$, not just the image of $K \hookrightarrow K_{\mathbb{R}}$). The topology it induces on $K_{\mathbb{R}}$ is the same as the Euclidean topology on $\mathbb{R}^r \times \mathbb{C}^s$, but the corresponding norm $\| \cdot \|$ has a different normalization, as we now explain.

If we write the elements of $K_{\mathbb{C}} \simeq \mathbb{C}^n$ as vectors (z_{σ}) indexed by $\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C})$, we may identify $K_{\mathbb{R}}$ with its image in $K_{\mathbb{C}}$ as the set

$$K_{\mathbb{R}} = \{(z_{\sigma}) \in K_{\mathbb{C}} : \bar{z}_{\sigma} = z_{\bar{\sigma}}\}.$$

When $\sigma = \bar{\sigma}$ is a real embedding, $\bar{z}_{\sigma} = z_{\bar{\sigma}} \in \mathbb{R}$, while for pairs of conjugate complex embeddings $(\sigma, \bar{\sigma})$ we get the embedding $z \mapsto (z, \bar{z})$ of \mathbb{C} into $\mathbb{C} \times \mathbb{C}$ noted above. Each vector $(z_{\sigma}) \in K_{\mathbb{R}}$ can be written uniquely in the form

$$(w_1, \dots, w_r, x_1 + iy_1, x_1 - iy_1, \dots, x_s + iy_s, x_s - iy_s),$$
 (5)

with $w_i, y_j, z_i \in \mathbb{R}$, where each z_i corresponds to a z_{σ} with $\sigma = \bar{\sigma}$, and each $(x_j + iy_j, x_j - iy_j)$ corresponds to a complex conjugate pair $(z_{\sigma}, z_{\bar{\sigma}})$ with $\sigma \neq \bar{\sigma}$. The canonical inner product then becomes

$$\langle z, z' \rangle = \sum_{i=1}^{r} w_i w_i' + 2 \sum_{j=1}^{s} (x_j x_j' + y_j y_j'),$$

and if we normalize the Haar measure μ on $K_{\mathbb{R}}$ consistently we will have

$$\mu(S) = 2^s \mu_{\mathbb{R}^n}(S),$$

where $\mu_{\mathbb{R}_n}$ denotes the standard Lebesgue measure on \mathbb{R}^n . Having fixed a normalization of the Haar measure on $K_{\mathbb{R}}$, we can compute the covolume of the lattice \mathcal{O}_K in $K_{\mathbb{R}}$.

13.3 Covolumes of ideals

Proposition 13.14. Let K be a number field with ring of integers \mathcal{O}_K . Then

$$\operatorname{covol}(\mathcal{O}_K) = \sqrt{|\operatorname{disc} \mathcal{O}_K|}.$$

Proof. Let $e_1, \ldots, e_n \in \mathcal{O}_K$ be a \mathbb{Z} -basis for \mathcal{O}_K , and let $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C}) = \{\sigma_1, \ldots, \sigma_n\}$. Let $A := [\sigma_i(e_j)]_{ij} \in \mathbb{C}^{n \times n}$. Viewing $\mathcal{O}_K \hookrightarrow K_{\mathbb{R}}$ as a lattice in $K_{\mathbb{R}}$ with basis e_1, \ldots, e_n , using

(1) to compute $\operatorname{covol}(\mathcal{O}_K)^2 = \mu(F(e_1, \dots, e_n))^2$ yields

$$\operatorname{covol}(\mathcal{O}_K)^2 = \det[\langle e_i, e_j \rangle]_{i,j}$$

$$= \det\left[\sum_k \sigma_k(e_i) \overline{\sigma_k(e_j)}\right]_{i,j}$$

$$= \det(\overline{A}^t A)$$

$$= \overline{\det A} \det A$$

$$= |\det A|^2,$$

and by Proposition 11.13, $|\operatorname{disc} \mathcal{O}_K| = |\operatorname{det} A|^2 = \operatorname{covol}(\mathcal{O}_K)^2$.

Recall from Remark 6.12 that for number fields K we view the absolute norm

$$N: \mathcal{I}_{\mathcal{O}_K} \to \mathcal{I}_{\mathbb{Z}}$$

$$I \mapsto (\mathcal{O}_K: I)_{\mathbb{Z}}$$

as having image in $\mathbb{Q}_{>0}$ by identifying $N(I) = (x) \in \mathcal{I}_{\mathbb{Z}}$ with $|x| \in \mathbb{Q}_{>0}$. For ideals $I \subseteq \mathcal{O}_K$ this is just the positive integer $[\mathcal{O}_K : I]$; by definition, the norm N(I) is the module index $(\mathcal{O}_K : I)_{\mathbb{Z}}$, and for $I \subseteq \mathcal{O}_K$ this is simply the \mathbb{Z} -ideal generated by $[\mathcal{O}_K : I]$.

Corollary 13.15. Let K be a number field and let I be a nonzero fractional ideal of \mathcal{O}_K . Then

$$\operatorname{covol}(I) = \sqrt{|\operatorname{disc} \mathcal{O}_K|} N(I)$$

Proof. Let $n = [K : \mathbb{Q}]$. Since $\operatorname{covol}(bI) = b^n \operatorname{covol}(I)$ and $N(bI) = b^n N(I)$ for any $b \in \mathbb{Z}_{\geq 0}$, without loss of generality we may assume $I \subseteq \mathcal{O}_K$ (replace I with a suitable bI if not). Applying Propositions 13.9 and 13.14, we have

$$\operatorname{covol}(I) = \operatorname{covol}(\mathcal{O}_K)[\mathcal{O}_K : I] = \operatorname{covol}(\mathcal{O}_K)N(I) = \sqrt{|\operatorname{disc} \mathcal{O}_K|}N(I)$$

as claimed. \Box

13.4 The Minkowski bound

Theorem 13.16 (Minkowski bound). Let K be a number field of degree n = r + 2s with s complex embeddings. Define the Minkowski constant m_K for K as the positive real number

$$m_K := \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|\operatorname{disc} \mathcal{O}_K|}.$$

For every nonzero fractional ideal I of \mathcal{O}_K there is a nonzero $a \in I$ for which

$$|N_{K/\mathbb{Q}}(a)| \le m_K N(I).$$

Before proving the theorem we first prove a lemma.

Lemma 13.17. Let K be a number field of degree n = r + 2s with r real and s complex places. For each $t \in \mathbb{R}_{>0}$, the volume of the convex symmetric set

$$S_t := \left\{ (z_\sigma) \in K_\mathbb{R} : \sum |z_\sigma| \le t \right\} \subseteq K_\mathbb{R}$$

with respect to the normalized Haar measure μ on $K_{\mathbb{R}}$ is

$$\mu(S_t) = 2^r \pi^s \frac{t^n}{n!}.$$

Proof. As in (5), we may uniquely write each $(z_{\sigma}) \in \mathcal{K}_{\mathbb{R}}$ in the form

$$(w_1,\ldots,w_r,\ x_1+iy_1,\ x_1-iy_1\ \ldots,\ x_s+iy_s,\ x_s-iy_s)$$

with $w_i, x_j, y_j \in \mathbb{R}$. We will have $\sum_{\sigma} |z_{\sigma}| \leq t$ if and only if

$$\sum_{i=1}^{r} |w_i| + \sum_{j=1}^{s} 2\sqrt{|x_j|^2 + |y_j|^2} \le t.$$
 (6)

It follows that

$$\mu(S_t) = 2^s \mu_{\mathbb{R}^n}(V) \tag{7}$$

where $V \subseteq \mathbb{R}^n$ is the region defined by (6) and $\mu_{\mathbb{R}^n}$ is the standard Lebesgue measure on \mathbb{R}^n . We now show that the volume of V is a scalar multiple of the volume of the set

$$U := \{(u_1, \dots, u_n) \in \mathbb{R}^n \colon \sum u_i \le t \text{ and } u_i \ge 0\} \subseteq \mathbb{R}^n,$$

which is $\mu_{\mathbb{R}^n}(U) = t^n/n!$ (the volume of the standard simplex in \mathbb{R}^n scaled by a factor of t).

If we view all the w_i, x_j, y_j as fixed except the last pair (x_s, y_s) , then (x_s, y_s) ranges over a disk of some radius $d \in [0, t]$ determined by (6). If we replace (x_s, y_s) with (u_{n-1}, u_n) ranging over the triangular region bounded by $u_{n-1} + u_n \le 2d$ and $u_{n-1}, u_n \ge 0$, we need to incorporate a factor of $\pi/2$ to account for the difference between $(2d^2)/2 = 2d^2$ and πd^2 ; repeat this s times. Similarly, we now hold all but w_r fixed and replace w_r ranging over [-d, d] with u_r ranging over [0, d], and incorporate a factor of 2 to account for this change of variable; repeat r times. We then have

$$\mu_{\mathbb{R}^n}(V) = 2^{r-s} \pi^s \mu_{\mathbb{R}^n}(U).$$

Plugging this into (7) and applying $\mu_{\mathbb{R}^n}(U) = t^n/n!$ yields

$$\mu(S_t) = 2^r \pi^s \frac{t^n}{n!}$$

as desired. This completes the proof of the lemma.

Proof of Theorem 13.16. Let I be a nonzero fractional ideal of \mathcal{O}_K . By Minkowski's Lattice Point Theorem (Corollary 13.12) and Corollary 13.15, if we choose t so that

$$\mu(S_t) > 2^n \operatorname{covol}(I) = 2^n \sqrt{|\operatorname{disc} \mathcal{O}_K|} N(I),$$

then S_t will contain a nonzero element $a \in I$ which must satisfy

$$\sum_{a} |\sigma(a)| \le t,$$

where σ ranges over the *n* elements of $\mathrm{Hom}_{\mathbb{Q}}(K,\mathbb{C})$.

By Lemma 13.17, we want to choose t so that

$$\mu(S_t) = 2^r \pi^s \frac{t^n}{n!} > 2^n \sqrt{|\operatorname{disc} \mathcal{O}_K|} N(I),$$

equivalently,

$$t^n > \frac{2^{n-r}n!}{\pi^s} \sqrt{|\operatorname{disc} \mathcal{O}_K|} N(I) = n! \left(\frac{4}{\pi}\right)^s \sqrt{|\operatorname{disc} \mathcal{O}_K|} N(I) = n^n m_K N(I).$$

Let us now pick t so that $\left(\frac{t}{n}\right)^n > m_K N(I)$. Recalling that the geometric mean is bounded above by the arithmetic mean, we have

$$\sqrt[n]{|N_{K/\mathbb{Q}}(a)|} = \sqrt[n]{\prod |\sigma(a)|} \le \frac{1}{n} \sum |\sigma(a)| < \frac{t}{n},$$

Thus $|N_{K/\mathbb{Q}}(a)| < \left(\frac{t}{n}\right)^n$. If we now take the limit as $\left(\frac{t}{n}\right)^n \to m_K N(I)$ from above, we obtain $|N_{K/\mathbb{Q}}(a)| \le m_K N(I)$ as desired.

13.5 Finiteness of the ideal class group

Recall that the ideal class group $\operatorname{Pic} \mathcal{O}_K = \operatorname{cl} \mathcal{O}_K = \mathcal{I}_K/\mathcal{P}_K$ is the quotient of the ideal group \mathcal{I}_K of \mathcal{O}_K by its subgroup of principal fractional ideals \mathcal{P}_K .

We now use the Minkowski bound to prove that every ideal class contains a representative ideal of small norm. It will then follow that the ideal class group is finite.

Theorem 13.18. Let K be a number field. Every ideal class in $\operatorname{cl} \mathcal{O}_K$ contains an ideal $I \subseteq \mathcal{O}_K$ of absolute norm $N(I) \leq m_K$, where m_K is the Minkowski constant.

Proof. Let [J] be an ideal class of \mathcal{O}_K represented by the nonzero fractional ideal J. By Theorem 13.16, the ideal J^{-1} contains a nonzero element a for which

$$|N_{K/\mathbb{Q}}(a)| \le m_K N(J^{-1}) = m_K / N(J),$$

and therefore $N(aJ) = |N_{K/\mathbb{Q}}(a)|N(J) \le m_K$. We have $a \in J^{-1}$, thus $aJ \subseteq J^{-1}J = \mathcal{O}_K$ and aJ is an \mathcal{O}_K -ideal as desired.

Lemma 13.19. Let K be a number field and let M be a real number. The set of ideals $I \subseteq \mathcal{O}_K$ with $N(I) \leq M$ is finite.

Proof 1. As a lattice in $K_{\mathbb{R}} \simeq \mathbb{R}^n$, the additive group $\mathcal{O}_K \simeq \mathbb{Z}^n$ has only finitely many subgroups I of index m for each positive integer $m \leq M$, since

$$(m\mathbb{Z})^n \subset I \subset \mathbb{Z}^n$$
,

and $(m\mathbb{Z})^n$ has finite index $m^n = [\mathbb{Z}^n : m\mathbb{Z}^n] = [\mathbb{Z} : m\mathbb{Z}]^n$ in \mathbb{Z}^n .

Proof 2. Let I be an ideal of absolute norm $N(I) \leq M$ and let $I = \mathfrak{p}_1 \cdots \mathfrak{p}_k$ be its factorization into (not necessarily distinct) prime ideals. Then $M \geq N(I) = N(\mathfrak{p}_1) \cdots N(\mathfrak{p}_k) \geq 2^k$, since the norm of each \mathfrak{p}_i is a prime power, and in particular at least 2. It follows that $k \leq \log_2 M$ is bounded, independent of I. Each prime ideal \mathfrak{p} lies above some prime $p \leq M$, of which there are $\pi(M) \approx M/\log M$ (here $\pi(x)$ is the prime counting function), and for each prime p the number of primes $\mathfrak{p}|p$ is at most n. Thus there are at most $(n\pi(M))^{\log_2 M}$ ideals of norm at most M, a finite number.

Theorem 13.20. Let K be a number field. The ideal class group of \mathcal{O}_K is finite.

Proof. By Theorem 13.18, each ideal class is represented by an ideal of norm at most m_K , and clearly distinct ideal classes must be represented by distinct ideals. By Lemma 13.19, the number of such ideals is finite.

Remark 13.21. For imaginary quadratic fields $K = \mathbb{Q}(\sqrt{-d})$ it is known that the class number $h_K = \# \operatorname{cl} \mathcal{O}_K$ tends to infinity as $d \to \infty$ ranges over square-free integers. This was conjectured by Gauss in his *Disquisitiones Arithmeticae* [2] and proved by Heilbronn [4] in 1934; the first fully explicit lower bound was obtained by Oesterlé in 1988 [5].

This implies that there are only a finite number of imaginary quadratic fields with any particular class number. It was conjectured by Gauss that there are exactly 9 imaginary quadratic fields with class number one, but this was not proved until the 20th century by Stark [6] and Heegner [3].² Complete lists of imaginary quadratic fields for each class number $h_K \leq 100$ are now available [7].

The situation for real quadratic fields is quite different; it is generally believed that there are infinitely many real quadratic fields with class number 1.3

Corollary 13.22. Let K be a number field of degree n with s complex places. Then

$$|\operatorname{disc} \mathcal{O}_K| \ge \left(\frac{n^n}{n!}\right)^2 \left(\frac{\pi}{4}\right)^{2s} > \frac{1}{2\pi n} \left(\frac{\pi e^2}{4}\right)^n.$$

Proof. The absolute norm of an integral ideal is a positive integer, thus Theorem 13.18 implies $m_K \geq 1$. Therefore

$$\frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|\operatorname{disc} \mathcal{O}_K|} \ge 1.$$

The first lower bound on $|\operatorname{disc} \mathcal{O}_K|$ follows from the fact that $s \leq n/2$, and the second follows form the fact

$$n! \ge \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

for all $n \geq 1$, by an explicit version of Stirling's approximation.

We note that $\pi e^2/4 > 5.8$, so the minimum value of $|\operatorname{disc} \mathcal{O}_K|$ increases exponentially with $n = [K : \mathbb{Q}]$. The lower bounds for $n \in [2, 7]$ given by the corollary are listed below, along with the least value of $|\operatorname{disc} \mathcal{O}_K|$ that actually occurs. As can be seen in the table, $|\operatorname{disc} \mathcal{O}_K|$ appears to grow substantially faster than the corollary suggests. Better lower bounds can be proved using more advanced techniques.

	n=2	n = 3	n=4	n = 5	n = 6	n = 7
lower bound from Corollary 13.22	3	11	46	210	1014	5014
minimum value of $ \operatorname{disc} \mathcal{O}_K $	3	23	275	4511	92799	2306599

Corollary 13.23. If K is a number field other than \mathbb{Q} then $|\operatorname{disc} \mathcal{O}_K| > 1$. In particular, there is no non-trivial unramified extension of \mathbb{Q} .

Proposition 13.24. For $M \in \mathbb{R}_{>0}$ the set of number fields K with $|\operatorname{disc} \mathcal{O}_K| < M$ is finite.

Proof. Since we know that $|\operatorname{disc} \mathcal{O}_K| \to \infty$ as $n \to \infty$, it suffices to prove this for each fixed degree $n = [K : \mathbb{Q}]$.

Case 1: Let K be a totally real field (so every place $v|\infty$ is real) with $|\operatorname{disc} \mathcal{O}_K| < M$. Then r = n and s = 0, so $K_{\mathbb{R}} \simeq \mathbb{R}^r \times \mathbb{C}^s = \mathbb{R}^n$. Consider the convex symmetric set

$$S := \{(x_1, \dots, x_n) \in K_{\mathbb{R}} \simeq \mathbb{R}^n : |x_1| \le \sqrt{M} \text{ and } |x_i| < 1 \text{ for } i > 1\}.$$

²Heegner's 1952 result [3] was essentially correct but contained some gaps that prevented it from being generally accepted until 1967 when Stark gave a complete proof in [6].

³In fact it is conjectured that $h_K = 1$ for approximately 75.446% of real quadratic fields with prime discriminant; this follows from the Cohen-Lenstra heuristics [1].

Then

$$\mu(S) = 2\sqrt{M}2^{n-1} = 2^n\sqrt{M} > 2^n\sqrt{|\operatorname{disc}\mathcal{O}_K|} = 2^n\operatorname{covol}(\mathcal{O}_K),$$

and by the Minkowski lattice point theorem (Corollary 13.12), S contains a nonzero element $a \in \mathcal{O}_K \subseteq K \hookrightarrow K_{\mathbb{R}}$ that we may write as $a = (a_{\sigma}) = (\sigma_1(a), \dots, \sigma_n(a))$, where the σ_i are the n embeddings of K into \mathbb{C} , all of which are real embeddings. We have

$$|N_{K/\mathbb{Q}}(a)| = \left| \prod_{i=1} \sigma_i(a) \right| \in \mathbb{Z}_{>0},$$

which must be at least 1, and $|a_2|, \ldots, |a_n| < 1$ so $|a_1| > 1 > |a_i|$ for $i = 2, \ldots, n$.

We now claim that $K = \mathbb{Q}(a)$. If not, each $a_i = \sigma_i(a)$ would be repeated $[K : \mathbb{Q}(a)] > 1$ times in the vector (a_1, \ldots, a_n) , since there must be $[K : \mathbb{Q}(a)]$ elements of $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$ that fix $\mathbb{Q}(a)$, namely, those lying in the kernel of the map $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C}) \to \operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}(a), \mathbb{C})$ induced by restriction. But this is impossible since $|a_1| > |a_i|$ for $i \neq 1$.

Now $a \in \mathcal{O}_K$, so its minimal polynomial is a monic irreducible polynomial $f \in \mathbb{Z}[x]$ of degree n. The roots of f(x) correspond to the $a_i = \sigma_i(a) \in \mathbb{R}$ which are all bounded in absolute value; and the coefficients of f(x) are the elementary symmetric functions of the roots, hence also bounded in absolute value. The coefficients of f are integers, so there are only finitely many possibilities for f(x), given the bound M, hence only finitely many totally real number fields K of degree n.

Case 2: K has r real and s > 0 complex places, where n = r + 2s and $K_{\mathbb{R}} \simeq \mathbb{R}^r \times \mathbb{C}^s$. Now let

$$S := \{(w_1, \dots, w_r, x_1 + iy_1, \dots, x_s + iy_s) \in K_{\mathbb{R}} : |x_1| < c\sqrt{M} \text{ and } |w_i|, |x_j|, |y_k| < 1 \ (j \neq 1)\}$$

with c chosen so that $\mu(S) > 2^n \operatorname{covol}(\mathcal{O}_K)$ (the exact value of c depends on n but clearly this can be done). The argument now proceeds as in case 1: we get a nonzero $a \in \mathcal{O}_K \cap S$ with $K = \mathbb{Q}(a)$, and only a finite number of possible minimal polynomials $f \in \mathbb{Z}[x]$ for a. \square

Lemma 13.25. Let K be a number field of degree n. For each prime $p \in \mathbb{Z}$ we have

$$v_p(\operatorname{disc} \mathcal{O}_K) \le n(\log_p n + 1) - 1.$$

In particular, $v_p(\operatorname{disc} \mathcal{O}_K) \leq n(\log_2 n + 1) - 1$ for all primes $p \in \mathbb{Z}$.

Proof. We have

$$|\operatorname{disc} \mathcal{O}_K|_p = |N_{K/\mathbb{Q}}(\mathcal{D}_{K/\mathbb{Q}})|_p = \prod_{v|p} |\mathcal{D}_{K_v/\mathbb{Q}_p}|_v,$$

where $\mathcal{D}_{K_v/\mathbb{Q}_p}$ denotes the different ideal. It follows from Theorem 12.8 that

$$v_p(\operatorname{disc} \mathcal{O}_K) \le \sum_{v|p} (e_v - 1 + e_v v_p(e_v)),$$

where e_v is the ramification index of K_v/\mathbb{Q}_p . We have $\sum_{v|p} e_v \leq n$, and $v_p(e_v)$ cannot exceed $\log_p(n)$, so

$$v_p(\operatorname{disc} \mathcal{O}_K) \le n(\log_p n + 1) - 1$$

as claimed. \Box

Remark 13.26. The bound in Lemma 13.25 is tight. It is achieved by $K = \mathbb{Q}[x]/(x^{p^e} - p)$, for example.

Theorem 13.27 (Hermite). Let S be a finite set of places of \mathbb{Q} , and let $n \in \mathbb{Z}_{>1}$. The number of extensions K/\mathbb{Q} of degree n unramified outside of S is finite.

Proof. By the lemma, since n is fixed, the valuation $v_p(\operatorname{disc} \mathcal{O}_K)$ is bounded for each $p \in S$, so $|\operatorname{disc} \mathcal{O}_K|$ is bounded. The theorem then follows from Proposition 13.24.

References

- [1] Henri Cohen and Hendrik W. Lenstra Jr., *Heuristics on class groups of number fields*, in *Number Theory (Noordwijkerhout 1983)*, Lecture Notes in Mathematics **1068**, Springer, 1984, 33–62.
- [2] Carl F. Gauss, *Disquisitiones Arithmeticae*, Göttingen (1801), English translation by Arthur A. Clark, revised by William C. Waterhouse, Spring-Verlag 1986 reprint of Yale University Press 1966 edition.
- [3] Kurt Heegner, *Diophantische Analysis und Modulfunktionen*, Math. Z. **56** (1952), 227–253.
- [4] Hans Heilbronn, On the class number in imaginary quadratic fields, Quart. J. of Math. Oxford 5 (1934), 150–160.
- [5] Joseph Oesterlé, *La problème de Gauss sur le nombre de classes*, Enseign. Math. **34** (1988), 43–67.
- [6] Harold Stark, A complete determination of the complex quadratic fields of class–number one, Mich. Math. J. 14 (1967), 1–27.
- [7] Mark Watkins, Class numbers of imaginary quadratic fields, Math. Comp. **73** (2004), 907–938.

MIT OpenCourseWare http://ocw.mit.edu

18.785 Number Theory I Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.