2 Localization and Dedekind domains

2.1 More on integral extensions

Proposition 2.1. Let A be an integrally closed domain with fraction field K. Let α be an element of a finite extension L/K, and let $f \in K[x]$ be its minimal polynomial over K. Then α is integral over A if and only if $f \in A[x]$.

Proof. The reverse implication is immediate: if $f \in A[x]$ then certainly α is integral over A. For the forward implication, suppose α is integral over A and let $g \in A[x]$ be a monic polynomial for which $g(\alpha) = 0$. Over $\overline{K}[x]$ we may factor f(x) as

$$f(x) = \prod_{i} (x - \alpha_i).$$

For each α_i we have a field embedding $K(\alpha) \to \overline{K}$ that sends α to α_i and fixes K. As elements of \overline{K} we have $g(\alpha_i) = 0$, so each $\alpha_i \in \overline{K}$ is integral over A and lies in the integral closure \overline{A} of A in \overline{K} . Each coefficient of $f \in K[x]$ can be expressed as a sum of products of the α_i , and is therefore an element of the ring \overline{A} that also lies in K. But $A = \overline{A} \cap K$, since A is integrally closed in its fraction field K.

2.2 Localization of rings

Let A be a ring (commutative and unital, as always), and let S be a subset of A that is closed under finite products, including the empty product (so $1 \in S$). Although this is not strictly necessary, in order to simplify the presentation let us also assume that S contains no zero divisors of A; equivalently, the map $A \stackrel{\times S}{\to} A$ is injective for all $S \in S$.

Definition 2.2. The *localization* of A with respect to S is the ring of equivalence classes

$$S^{-1}A := \{a/s : a \in A, s \in S\} / \sim$$

where $a/s \sim a'/s'$ if and only if as' = a's. This ring is also often denoted $A[S^{-1}]$.

We canonically embed A in $S^{-1}A$ by identifying each $a \in A$ with the equivalence class a/1 in $S^{-1}A$; our assumption that S has no zero divisors ensures that this map is injective. We thus view A as a subring of $S^{-1}A$, and when A is an integral domain (the case of interest to us), we may also regard $S^{-1}A$ as a subring of the fraction field of A, which can be defined as $A^{-1}A$, the localization of A with respect to itself. More generally if $S \subseteq T$ are subsets of A that are both closed under finite products and contain no zero divisors, we can view $S^{-1}A$ as a subring of $T^{-1}A$ (note that the equivalence relations are compatible).

The map $A \to B := S^{-1}A$ is a ring homomorphism, thus if \mathfrak{b} is any B-ideal, the inverse image of \mathfrak{b} in A is an A-ideal called the *contraction* of \mathfrak{b} (to A); it is sometimes denoted \mathfrak{b}^c , but when we are viewing A as a subring of B, we will usually just write $\mathfrak{b} \cap A$. The image of an A-ideal \mathfrak{a} in B is typically not a B-ideal; the B-ideal generated by the image of \mathfrak{a} is called the *extension* of \mathfrak{a} (to B) and sometimes denoted \mathfrak{a}^e . In our setting this ideal can be written as

$$\mathfrak{a}B := \{ab : a \in \mathfrak{a}, b \in B\},\tag{1}$$

since we may rewrite any sum $a_1/s_1 + \cdots + a_n/s_n$ as a/s' with $a \in A$ and $s = s_1 \cdots s_n$ in S (here we are using the assumption that S has no zero divisors).

It should be immediately clear that $\mathfrak{a} \subseteq (\mathfrak{a}^e)^c$ and that $(\mathfrak{b}^c)^e \subseteq \mathfrak{b}$, and one might ask whether this inclusions are equalities. In general the first inclusion is not an equality; for example, if $\mathfrak{a} \cap S \neq \emptyset$ then \mathfrak{a}^e , and therefore $(\mathfrak{a}^e)^c$, is the unit ideal, which may be larger than \mathfrak{a} . But the second inclusion is always an equality; see [1, Prop. 11.19] or [2, Prop. 3.11] for a short proof. We also note the following theorem.

Theorem 2.3. The map $\mathfrak{q} \mapsto \mathfrak{q} \cap A$ defines a bijection from the set of prime ideals of $S^{-1}A$ and the set of prime ideals of A that do not intersect S. The inverse map is $\mathfrak{p} \mapsto \mathfrak{p} S^{-1}A$.

Proof. See [1, Cor. 11.20] or [2, Prop. 3.11.iv].
$$\Box$$

Remark 2.4. An immediate consequence of (1) is that if $a_1, \ldots, a_n \in A$ generate \mathfrak{a} as an A-ideal, then they also generate \mathfrak{a}^e as a B-ideal, and every B-ideal \mathfrak{b} is of this form (take $\mathfrak{a} = \mathfrak{b}^c$). Thus if A is noetherian then so are all its localizations, and if A is a PID then so are all of its localizations.

An important special case of localization occurs when \mathfrak{p} is a prime ideal in an integral domain A and $S = A - \mathfrak{p}$ (the complement of the set \mathfrak{p} in the set A). In this case it is customary to denote $S^{-1}A$ by

$$A_{\mathfrak{p}} := \{ a/b : a \in A, b \notin \mathfrak{p} \} / \sim \tag{2}$$

and call it the *localization of* A at \mathfrak{p} . The prime ideals of $A_{\mathfrak{p}}$ are then in bijection with the prime ideals of A that lie in \mathfrak{p} . It follows that $\mathfrak{p}A_{\mathfrak{p}}$ is the unique maximal ideal of A, thus $A_{\mathfrak{p}}$ is a local ring.

The ring $A_{\mathfrak{p}}$ is an extension of A that lies its fraction field; we have the tower of rings

$$A \subseteq A_{\mathfrak{p}} \subseteq \operatorname{Frac} A$$
.

In the case $\mathfrak{p} = (0)$, we have $A_{\mathfrak{p}} = \operatorname{Frac} A$, but otherwise $A_{\mathfrak{p}}$ is properly contained in Frac A.

Warning 2.5. The notation in (2) makes it tempting to assume that if a/b is an element of Frac A, then $a/b \in \mathbb{A}_p$ if and only if $b \notin \mathfrak{p}$. This is not necessarily true! As an element of Frac A, the notation "a/b" represents an equivalence class [a/b], and if [a/b] = [a'/b'] with $b' \notin A_{\mathfrak{p}}$, then in fact $[a/b] \in A_{\mathfrak{p}}$. As a trivial example, take $A = \mathbb{Z}$, $\mathfrak{p} = (3)$, a/b = 9/3 and a'/b' = 3/1. You may object that we should write a/b in lowest terms, but when A is not a unique factorization domain it is not necessarily clear what this means.

Example 2.6. For a field k, let A = k[x] and $\mathfrak{p} = (x-2)$. Then

$$A_{\mathfrak{p}} = \{ f \in k(x) : f \text{ is defined at } 2 \}.$$

The ring A is a PID, so A_p is a local PID, hence a DVR, and its unique maximal ideal is

$$\mathfrak{p}A_{\mathfrak{p}} = \{ f \in k(x) : f(2) = 0 \}.$$

The valuation on the field $k(x) = \operatorname{Frac} A$ corresponding to the valuation ring $A_{\mathfrak{p}}$ measures the order of vanishing of functions $f \in k(x)$ at 2. The residue field is $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \simeq k$, and the quotient map $A_{\mathfrak{p}} \twoheadrightarrow A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ sends f(x) to f(2).

Example 2.7. Let $p \in \mathbb{Z}$ be a prime. Then $\mathbb{Z}_{(p)} = \{a/b : a, b \in \mathbb{Z}, p \nmid b\}$. As in the previous example, \mathbb{Z} is a PID, so $\mathbb{Z}_{(p)}$ is a local PID, hence a DVR, and the corresponding valuation on \mathbb{Q} is the p-adic valuation.

2.3 Localization of modules

The concept of localization generalizes to modules. As above, let A be a ring and let S a subset of A closed under finite products. If M is an A-module such that the map $M \stackrel{\times s}{\to} M$ is injective for all $s \in S$ (this is a strong assumption that imposes constraints on both S and M, but it holds in the cases we care about), then the set

$$S^{-1}M := \{m/s : m \in M, s \in S\}/\sim$$

is an $S^{-1}A$ -module (the equivalence is $m/s \sim m'/s' \Leftrightarrow s'm = sm'$, as usual). We could equivalently define $S^{-1}M := M \otimes_A S^{-1}A$ (see [2, Prop. 3.5]). We will usually take $S = A - \mathfrak{p}$, in which case we write $M_{\mathfrak{p}}$ for $S^{-1}M$, just as we write $A_{\mathfrak{p}}$ for $S^{-1}A$.

Proposition 2.8. Let A be a subring of a field K, and let M be an A-module contained in a K-vector space V (equivalently, for which the map $M \to M \otimes_A K$ is injective). Then

$$M=\bigcap_{\mathfrak{m}}M_{\mathfrak{m}}=\bigcap_{\mathfrak{p}}M_{\mathfrak{p}},$$

where \mathfrak{m} ranges over the maximal ideals of A and \mathfrak{p} ranges over the prime ideals of A and the intersections takes place in V.

Proof. The fact that $M \subseteq \bigcap_{\mathfrak{m}} M_{\mathfrak{m}}$ is immediate. Now suppose $x \in \bigcap_{\mathfrak{m}} M_{\mathfrak{m}}$. The set $\{a \in A : ax \in M\}$ is an A-ideal \mathfrak{a} , and it is not contained in any maximal ideal \mathfrak{m} , since $\mathfrak{a} \subseteq \mathfrak{m}$ implies $x \notin M_{\mathfrak{m}}$. Therefore $\mathfrak{a} = (1)$, so $x = 1 \cdot x \in M$.

We now note that each $M_{\mathfrak{p}}$ contains some $M_{\mathfrak{m}}$ (since each \mathfrak{p} is contained in some \mathfrak{m}), and every maximal ideal is prime, so $\cap_{\mathfrak{m}} M_{\mathfrak{m}} = \cap_{\mathfrak{p}} M_{\mathfrak{p}}$.

Several important special cases of this proposition occur when A is a domain, K is its fraction field, and M is an A-submodule of K. The ideals I of A are precisely its A-submodules, each of which can be localized as above, and the result is just the extension of the ideal to the corresponding localization of A. In particular, if \mathfrak{p} is a prime ideal then

$$I_{\mathfrak{p}} = IA_{\mathfrak{p}},$$

and more generally, $M_{\mathfrak{p}} = MA_{\mathfrak{p}}$. We also have the following corollary of Proposition 2.8.

Corollary 2.9. Let A be a domain. Every ideal I of A (including I = A) is equal to the intersection of its localizations at the maximal ideals of A (and also to the intersection of its localizations at the prime ideals of A).

Example 2.10. If $A = \mathbb{Z}$ then $\mathbb{Z} = \bigcap_{p} \mathbb{Z}_{(p)}$ in \mathbb{Q} .

2.4 Dedekind domains

Proposition 2.11. Let A be a noetherian domain. The following are equivalent:

- (i) For every nonzero prime ideal $\mathfrak{p} \subset A$ the local ring $A_{\mathfrak{p}}$ is a DVR.
- (ii) The ring A is integrally closed and dim $A \leq 1$.

¹The image is a tensor product of A-modules that is also a K-vector space. We need the natural map to be injective in order to embed M in it. Note that V necessarily contains a subspace isomorphic to $M \otimes_A K$.

Proof. If A is a field then (i) and (ii) both hold, so let us assume that A is not a field, and put $K := \operatorname{Frac} A$. We first show that (i) implies (ii). Recall that dim A is the supremum of the length of all chains of prime ideals. It follows from Theorem 2.3 that every chain of prime ideals $(0) \subseteq \mathfrak{p}_1 \subseteq \cdots \subseteq \mathfrak{p}_n$ extends to a corresponding chain in $A_{\mathfrak{p}_n}$ of the same length, and conversely, every chain in $A_{\mathfrak{p}}$ contracts to a chain in A of the same length, thus

$$\dim A = \sup \{\dim A_{\mathfrak{p}} : \mathfrak{p} \in \operatorname{Spec} A\} = 1$$

since every $A_{\mathfrak{p}}$ is either a DVR ($\mathfrak{p} \neq (0)$), in which case dim $A_{\mathfrak{p}} = 1$, ora field ($\mathfrak{p} = (0)$), in which case dim $A_{\mathfrak{p}} = 0$. Any $a \in K$ that is integral over A is integral over every $A_{\mathfrak{p}}$ (since they all contain A), and the $A_{\mathfrak{p}}$ are integrally closed. So $a \in \bigcap_{\mathfrak{p}} A_{\mathfrak{p}} = A$, and therefore A is integrally closed, which shows (ii).

To show that (ii) implies (i), we first show that the following properties are all inherited by localizations of a ring: (1) domain, (2) noetherian, (3) dimension at most one, (4) integrally closed. (1) is obvious, (2) was noted in Remark 2.4, and (3) follows from the fact that every chain of prime ideals in $A_{\mathfrak{p}}$ extends to a chain of prime ideals in A of the same length (as argued above), so dim $A_{\mathfrak{p}} \leq \dim A$ always holds. To show (4), suppose that $x \in K = \operatorname{Frac} A_{\mathfrak{p}}$ is integral over $A_{\mathfrak{p}}$. Then

$$x^{n} + \frac{a_{n-1}}{s_{n-1}}x^{n-1} + \dots + \frac{a_1}{s_1}x + \frac{a_0}{s_0} = 0$$

for some $a_0, \ldots, a_{n-1} \in A$ and $s_0, \ldots, s_{n-1} \in A - \mathfrak{p}$. Multiplying both sides by s^n , where $s = s_0 \cdots s_{n-1} \in S$, shows that sx is integral over A, hence an element of A, since A is integrally closed. But then sx/s = x is an element of $A_{\mathfrak{p}}$, so $A_{\mathfrak{p}}$ is integrally closed as claimed.

Assuming (ii), every $A_{\mathfrak{p}}$ is an integrally closed noetherian local domain of dimension at most 1, and if $\mathfrak{p} \neq (0)$, then dim $A_{\mathfrak{p}} \geq 1$ (consider the chain $(0) \subseteq \mathfrak{p}A_{\mathfrak{p}}$) and therefore dim $A_{\mathfrak{p}} = 1$. Thus for every nonzero prime ideal \mathfrak{p} , the localization $A_{\mathfrak{p}}$ is an integrally closed noetherian local domain of dimension 1, and therefore a DVR, by Theorem 1.14.

Definition 2.12. A noetherian domain satisfying either of the equivalent properties of Proposition 2.11 is called a *Dedekind domain*.

Corollary 2.13. Every PID is a Dedekind domain. In particular, \mathbb{Z} is a Dedekind domain, as is k[x] for any field k.

Remark 2.14. Every PID is both a UFD and a Dedekind domain. Not every UFD is a Dedekind domain (consider k[x, y], for any field k), and not every Dedekind domain is a UFD (consider $\mathbb{Z}[\sqrt{-13}]$, in which $(1 + \sqrt{-13})(1 - \sqrt{-13}) = 2 \cdot 7 = 14$). However, every ring that is both a UFD and a Dedekind domain is a PID.

We will see that the ring of integers of a number field is always a Dedekind domain. More generally, we will prove that if A is a Dedekind domain and L is a finite separable extension of its fraction field, then the integral closure of A in L is a Dedekind domain.

References

- [1] Allen Altman and Steven Kleiman, A term of commutative algebra, Worldwide Center of Mathematics, 2013.
- [2] Michael Atiyah and Ian MacDonald, *Introduction to commutative algebra*, Addison—Wesley, 1969.

MIT OpenCourseWare http://ocw.mit.edu

18.785 Number Theory I Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.