22 The ring of adeles, strong approximation

22.1 Introduction to adelic rings

Recall that we have a canonical injection

$$
\mathbb{Z} \hookrightarrow \hat{\mathbb{Z}}:=\underset{{\underset{\sim}{n}}^{\lim } \mathbb{Z} / n \mathbb{Z} \simeq \prod_{p} \mathbb{Z}_{p}, \text {, }, \text {. }}{ }
$$

that embeds \mathbb{Z} into the product of its nonarchimedean completions. Each of the rings \mathbb{Z}_{p} is compact, hence $\hat{\mathbb{Z}}=\prod_{p} \mathbb{Z}_{p}$ is compact (by Tychonoff's theorem). But notice that if we consider the analogous product $\prod_{p} \mathbb{Q}_{p}$ of the completions of \mathbb{Q}, each of the local fields \mathbb{Q}_{p} is locally compact (including the archimedean field $\mathbb{Q}_{\infty}=\mathbb{R}$), but the product $\prod_{p} \mathbb{Q}_{p}$ is not locally compact. Local compactness is important to us, because it gives us a Haar measure (recall that any locally compact group has a translation-invariant measure that is unique up to scaling), a tool we would very much like to have at our disposal.

To see where the problem arises, recall that for any family of topological spaces $\left(X_{i}\right)_{i \in I}$ (here the index set I may be any set), the product topology on the set $X:=\prod X_{i}$ is, by definition, the weakest topology that makes the projection maps $\pi_{i}: X \rightarrow X_{i}$ continuous; this means it is generated by open sets of the form $\pi_{i}^{-1}\left(U_{i}\right)$ with $U_{i} \subseteq X_{i}$ open, and therefore every open set in X is a (possibly empty) union of open sets of the form

$$
\prod_{i \in S} U_{i} \times \prod_{i \in I-S} X_{i}
$$

with $S \subseteq I$ finite and each $U_{i} \subseteq X_{i}$ open (these sets form a basis for the topology on X). In particular, every open set $U \subseteq X$ will have $\pi_{i}(U)=X_{i}$ for all but finitely many $i \in I$, so unless all but finitely many of the X_{i} are compact, the space X cannot possibly be locally compact for the simple reason that no compact set C in X contains a nonempty open set (if it did then we would have $\pi_{i}(C)=X_{i}$ compact for all but finitely many $i \in I$). Recall that for X to be locally compact means that every $x \in X$ we have $x \in U \subseteq C$ for some open set U and compact set C (so C is a compact neighborhood of x).

To solve this problem we want to take the product of the fields \mathbb{Q}_{p} (or more generally, the completions of any global field) in a different way that yields a locally compact topological ring. This leads us to the restricted product which is a purely topological construction, but one that was invented essentially for the purpose of solving this number-theoretic problem.

22.2 Restricted products

This section is purely about the topology of restricted products; readers familiar with restricted products should feel free to skip to the next section.
Definition 22.1. Let $\left(X_{i}\right)$ be a family of topological spaces indexed by $i \in I$, and let $\left(U_{i}\right)$ be a family of open sets $U_{i} \subseteq X_{i}$. The restricted product $\prod\left(X_{i}, U_{i}\right)$ is the topological space

$$
\prod\left(X_{i}, U_{i}\right):=\left\{\left(x_{i}\right) \in \prod X_{i}: x_{i} \in U_{i} \text { for almost all } i \in I\right\}
$$

with the basis of open sets

$$
\mathcal{B}:=\left\{\prod V_{i}: V_{i} \subseteq X_{i} \text { is open for all } i \in I \text { and } V_{i}=U_{i} \text { for almost all } i \in I\right\}
$$

where almost all means all but finitely many.

For each $i \in I$ we have a projection map $\pi_{i}: \prod\left(X_{i}, U_{i}\right) \rightarrow X_{i}$ defined by $\left(x_{i}\right) \mapsto x_{i}$; each π_{i} is continuous, since if U_{i} is an open subset of X_{i}, then $\pi_{i}^{-1}\left(U_{i}\right)$ is the union of all $V=\prod V_{i} \in \mathcal{B}$ with $V_{i}=U_{i}$, which is open.

As sets, we always have

$$
\prod U_{i} \subseteq \prod\left(X_{i}, U_{i}\right) \subseteq \prod X_{i}
$$

but in general the restricted product topology on $\prod\left(X_{i}, U_{i}\right)$ is not the same as the subspace topology it inherits as a subset of $\prod X_{i}$; it has more open sets. For example, ΠU_{i} is open in $\Pi\left(X_{i}, U_{i}\right)$ but not in ΠX_{i}, unless $U_{i}=X_{i}$ for almost all i, in which case $\Pi\left(X_{i}, U_{i}\right)=\Pi X_{i}$ (both as sets and as topological spaces). Thus the restricted product is a generalization of the direct product and the two coincide if and only if $U_{i}=X_{i}$ for almost all i; note that this is automatically true when I is finite, so only infinite restricted products are interesting.

Remark 22.2. The restricted product does not depend on any particular U_{i}. Indeed,

$$
\prod\left(X_{i}, U_{i}\right)=\prod\left(X_{i}, U_{i}^{\prime}\right)
$$

whenever $U_{i}^{\prime}=U_{i}$ for almost all i; note that the two restricted products are not merely isomorphic, they are identical, both as sets and as topological spaces. It is thus enough to specify the U_{i} for all but finitely many $i \in I$.

Each $x \in X:=\rrbracket\left(X_{i}, U_{i}\right)$ distinguishes a finite subset $S=S(x) \subseteq I$, namely, the set of indices i for which $x_{i} \notin U_{i}$ (this may be the empty set). It is thus natural to consider

$$
X_{S}:=\{x \in X: S(x)=S\}=\prod_{i \in S} X_{i} \times \prod_{i \notin S} U_{i} .
$$

Notice that $X_{S} \in \mathcal{B}$ is an open set, and we can view it as a topological space in two ways: as a subspace of X or as a direct product of certain X_{i} and U_{i}. But notice that restricting the basis \mathcal{B} for X to a basis for the subspace X_{S} yields

$$
\mathcal{B}_{S}:=\left\{\prod V_{i}: V_{i} \subseteq \pi_{i}\left(X_{S}\right) \text { is open and } V_{i}=U_{i}=\pi_{i}\left(X_{S}\right) \text { for almost all } i \in I\right\}
$$

which is just the standard basis for the product topology on X_{S}, so the two coincide.
We have $X_{S} \subseteq X_{T}$ if and only if $S \subseteq T$, thus if we partially order the finite subsets $S \subseteq I$ by inclusion, the X_{S} and the inclusion maps $i_{S T}: X_{S} \hookrightarrow X_{T}$ form a direct system, and we can consider the corresponding direct limit

$$
\underset{S}{\lim } X_{S},
$$

which is the quotient of the coproduct space $\frac{1}{} \amalg X_{S}$ by the equivalence relation $x \sim i_{S T}(x)$ for all $x \in S \subseteq T$. This direct limit is canonically isomorphic to the restricted product X, which gives us another way to define the restricted product; before proving this list us recall the general definition of a direct limit of topological spaces.

Definition 22.3. A direct system (or inductive system) in a category is a family of objects $\left\{X_{i}: i \in I\right\}$ indexed by a directed set I (see Definition 8.15) and a family of morphisms $\left\{f_{i j}: X_{i} \rightarrow X_{j}: i \leq j\right\}$ such that each $f_{i i}$ is the identity and $f_{i k}=f_{j k} \circ f_{i j}$ for all $i \leq j \leq k$.

[^0]Definition 22.4. Let $\left(X_{i}, f_{i j}\right)$ be a direct system of topological spaces. The direct limit (or inductive limit) of $\left(X_{i}, f_{i j}\right)$ is the quotient space

$$
X=\underline{\longrightarrow} X_{i}:=\coprod_{i \in I} X_{i} / \sim,
$$

where $x_{i} \sim f_{i j}\left(x_{i}\right)$ for all $i \leq j$. The pullbacks $\phi_{i}: X_{i} \rightarrow X$ of the quotient map $\amalg X_{i} \rightarrow X$ satisfy $\phi_{i}=\phi_{j} \circ f_{i j}$ for $i \leq j$.

The topological space $X=\underset{\longrightarrow}{\lim } X_{i}$ has the universal property that if Y is another topological space with continuous maps $\psi_{i}: X_{i} \rightarrow Y$ that satisfy $\psi_{i}=\psi_{j} \circ f_{i j}$ for $i \leq j$, then there is a unique continuous map $X \rightarrow Y$ for which all of the diagrams

commute (this universal property defines the direct limit in any category with coproducts).
We now prove that that $\Pi\left(X_{i}, U_{i}\right) \simeq \underset{\longrightarrow}{\lim } X_{S}$ as claimed above.
Proposition 22.5. Let $\left(X_{i}\right)$ be a family of topological spaces indexed by $i \in I$, let $\left(U_{i}\right)$ be a family of open sets $U_{i} \subseteq X_{i}$, and let $X:=\rrbracket\left(X_{i}, U_{i}\right)$ be the corresponding restricted product. For each finite $S \subseteq I$ define

$$
X_{S}:=\prod_{i \in S} X_{i} \times \prod_{i \notin S} U_{i} \subseteq X
$$

and inclusion maps $i_{S T}: X_{S} \hookrightarrow X_{T}$, and let $\xrightarrow{\lim } X_{S}$ be the corresponding direct limit.
There is a canonical homeomorphism of topological spaces

$$
\varphi: X \xrightarrow{\sim} \xrightarrow[\longrightarrow]{\lim } X_{S}
$$

that sends $x \in X$ to the equivalence class of $x \in X_{S(x)} \subseteq \amalg X_{S}$ in $\underset{\longrightarrow}{\lim } X_{S}:=\amalg X_{S} / \sim$, where $S(x):=\left\{i \in I: x_{i} \notin U_{i}\right\}$.

Proof. To prove that the map $\varphi: X \rightarrow \underline{\lim } X_{S}$ is a homeomorphism, we need to show that it is (1) a bijection, (2) continuous, and $\overrightarrow{(3)}$ an open map.
(1) For each equivalence class $\mathcal{C} \in \underline{\lim } X_{S}:=\amalg X_{S} / \sim$, let $S(\mathcal{C})$ be the intersection of all the sets S for which \mathcal{C} contains an element of $\amalg X_{S}$ in X_{S}. Then $S(x)=S(\mathcal{C})$ for all $x \in \mathcal{C}$, and \mathcal{C} contains a unique element for which $x \in X_{S(x)} \subseteq \amalg X_{S}$. Thus φ is a bijection.
(2) Let U be an open set in $\lim X_{S}=\amalg X_{S} / \sim$. The inverse image V of U in $\amalg X_{S}$ is open, as are the inverse images \vec{V}_{S} of V under the canonical injections $\iota: X_{S} \hookrightarrow \amalg X_{S}$. The union of the V_{S} in X is equal to $\varphi^{-1}(U)$ and is an open set in X; thus φ is continuous.
(3) Let U be an open set in X. Since the X_{S} form an open cover of X, we can cover U with open sets $U_{S}=U \cap X_{S}$, and then $\amalg U_{S}$ is an open set in $\amalg X_{S}$. Moreover, for each $x \in \amalg U_{S}$, if $y \sim x$ for some $y \in \amalg X_{S}$ then y and x must correspond to the same element in U; in particular, $y \in \amalg U_{S}$, so $\amalg U_{S}$ is a union of equivalence classes in $\amalg X_{S}$. It follows that its image in $\xrightarrow{\lim } X_{S}=\amalg X_{S} / \sim$ is open.

Proposition 22.5 gives us another way to construct the restricted product $\Pi\left(X_{i}, U_{i}\right)$: rather than defining it as a subset of $\prod X_{i}$ with a modified topology, we can instead construct it as a limit of direct products that are subspaces of ΠX_{i}.

We now specialize to the case of interest, where we are forming a restricted product using a family $\left(X_{i}\right)_{i \in I}$ of locally compact spaces and a family of open subsets $\left(U_{i}\right)$ that are almost all compact. Under these conditions the restricted product $\Pi\left(X_{i}, U_{i}\right)$ is locally compact, even though the product $\prod X_{i}$ is not unless the index set I is finite.

Proposition 22.6. Let $\left(X_{i}\right)_{i \in I}$ be a family of locally compact topological spaces and let $\left(U_{i}\right)_{i \in I}$ be a corresponding family of open subsets $U_{i} \subseteq X_{i}$ almost all of which are compact. Then the restricted product $X:=\prod\left(X_{i}, U_{i}\right)$ is locally compact.

Proof. We first note that for each finite set $S \subseteq I$ the topological space

$$
X_{S}:=\prod_{i \in S} X_{i} \times \prod_{i \notin S} U_{i}
$$

can be viewed as a finite product of locally compact spaces, since all but finitely many of the U_{i} are compact and the product of these is compact (by Tychonoff's theorem), hence locally compact. A finite product of locally compact spaces is always locally compact, since we can construct compact neighborhoods as products of compact neighborhoods in each factor (the key point is that in a finite product, products of open sets are open); thus the X_{S} are all locally compact, and the X_{S} cover X (since each $x \in X$ lies in $X_{S(x)}$). It follows that X is locally compact, since each $x \in X_{S}$ has a compact neighborhood $x \in U \subseteq C \subseteq X_{S}$ that is also a compact neighborhood in X (every open cover of C in X restricts to an open cover of C in X_{S} that must have a finite subcover, so C is compact in X, and U is open in X because X_{S} is open).

22.3 The ring of adeles

Recall that for a global field K (finite extension of \mathbb{Q} or $\mathbb{F}_{q}(t)$), we use M_{K} to denote the set of places of K (equivalence classes of absolute values), and for any $v \in M_{K}$ we use K_{v} to denote the corresponding local field (the completion of K with respect to v), and define $\mathcal{O}_{v}:=K_{v}$ when v is nonarchimedean. $\stackrel{2}{2}$
Definition 22.7. Let K be a global field. The adele ring ${ }^{3}$ of K is the restricted product

$$
\mathbb{A}_{K}:=\prod\left(K_{v}, \mathcal{O}_{v}\right)_{v \in M_{K}}
$$

which we may view as a subset (but not a subspace!) of $\prod_{v} K_{v}$; indeed

$$
\mathbb{A}_{K}=\left\{\left(a_{v}\right) \in \prod K_{v}: a_{v} \in \mathcal{O}_{v} \text { for almost all } v\right\}
$$

and for each $a \in \mathbb{A}_{K}$ we use a_{v} to denote its projection in K_{v}; we make \mathbb{A}_{K} a ring by defining addition and multiplication component-wise (closure is clear).

For each finite set of places S we have the subring of S-adeles

$$
\mathbb{A}_{K, S}:=\prod_{v \in S} K_{v} \times \prod_{v \notin S} \mathcal{O}_{v}
$$

[^1]which is a direct product of topological rings. By Proposition $\underline{22.5}, \mathbb{A}_{K} \simeq \underset{\longrightarrow}{\lim } \mathbb{A}_{K, S}$ is the direct limit of the S-adele rings, which makes it clear that \mathbb{A}_{K} is also a topological ring.

The canonical embeddings $K \hookrightarrow K_{v}$ induce the canonical embedding

$$
\begin{aligned}
K & \hookrightarrow \mathbb{A}_{K} \\
x & \mapsto(x, x, x, \ldots)
\end{aligned}
$$

since for each $x \in K$ we have $x \in \mathcal{O}_{v}$ for all but finitely many v. The image of K in \mathbb{A}_{K} forms the subring of principal adeles (which of course is also a field).

We extend the normalized absolute value $\left\|\|_{v}\right.$ of K_{v} (see Definition $\underline{12.28}$) to \mathbb{A}_{K} via

$$
\|a\|_{v}:=\left\|a_{v}\right\|_{v}
$$

and define the adelic absolute value (or adelic norm)

$$
\|a\|:=\prod_{v \in M_{K}}\|a\|_{v} \in \mathbb{R}_{\geq 0}
$$

which we note converges because $\|a\|_{v} \leq 1$ for almost all v. For $\|a\| \neq 0$ this is equal to the size of the $M_{K^{-}}$divisor $\left(\|a\|_{v}\right)$ we defined in Lecture 14 (see Definition 14.1). For any nonzero principal adele a we necessarily have $\|a\|=1$, by the product formula (Theorem $\underline{12.32 \text {). }}$

Example 22.8. For $K=\mathbb{Q}$ the adele ring $\mathbb{A}_{\mathbb{Q}}$ is the union of the rings

$$
\mathbb{A}_{\mathbb{Q}, S}=\mathbb{R} \times \prod_{p \in S} \mathbb{Q}_{p} \times \prod_{p \notin S} \mathbb{Z}_{p}
$$

Taking $S=\emptyset$ yields the ring $\mathbb{A}_{\mathbb{Z}}:=\mathbb{R} \times \prod_{p<\infty} \mathbb{Z}_{p} \simeq \mathbb{R} \times \hat{\mathbb{Z}}$ of integral adeles. We can also write $\mathbb{A}_{\mathbb{Q}}$ as

$$
\mathbb{A}_{\mathbb{Q}}=\left\{a \in \prod_{p \leq \infty} \mathbb{Q}_{p}:\|a\|_{p} \leq 1 \text { for almost all } p\right\}
$$

Proposition 22.9. The adele ring \mathbb{A}_{K} of a global field K is locally compact and Hausdorff.
Proof. Local compactness follows from Proposition 22.6, since the local fields K_{v} are all locally compact and all but finitely many \mathcal{O}_{v} are valuation rings of a nonarchimedean local field, hence compact $\left(\mathcal{O}_{v}=\left\{x \in K_{v}:\|x\|_{v} \leq 1\right\}\right.$ is a closed ball in a metric space $)$. If $x, y \in \mathbb{A}_{K}$ are distinct then $x_{v} \neq y_{v}$ for some $v \in M_{K}$, and since K_{v} is Hausdorff we can separate x_{v} and y_{v} by open sets whose inverse images under the projection map $\pi_{v}: \mathbb{A}_{K} \rightarrow K_{v}$ are open sets separating x and $y ;$ thus \mathbb{A}_{K} is Hausdorff.

Proposition 22.9 implies that the additive group of \mathbb{A}_{K} (which is sometimes denoted \mathbb{A}_{K}^{+} to emphasize that we are viewing it as a group rather than a ring) is a locally compact group, and therefore has a Haar measure that is unique up to scaling. Each of the completions K_{v} is a local field with a Haar measure μ_{v} that we normalize as follows:

- $\mu_{v}\left(\mathcal{O}_{v}\right)=1$ for all nonarchimedean v;
- $\mu_{v}(S)=\mu_{\mathbb{R}}(S)$ for $K_{v} \simeq \mathbb{R}$, where $\mu_{\mathbb{R}}(S)$ is the standard Euclidean measure on \mathbb{R};
- $\mu_{v}(S)=2 \mu_{\mathbb{C}}(S)$ for $K_{v} \simeq \mathbb{C}$, where $\mu_{\mathbb{C}}(S)$ is the standard Euclidean measure on $\mathbb{C} \simeq \mathbb{R} \times \mathbb{R}$.

Note that the normalization of μ_{v} at the archimedean places is consistent with the canonical measure μ on $K_{\mathbb{R}} \simeq \mathbb{R}^{r} \times \mathbb{C}^{s} \simeq \mathbb{R}^{n}$ induced by the canonical inner product on $K_{\mathbb{R}} \subseteq K_{\mathbb{C}}$ that we defined in Lecture 13 (see $\S 13.2$).

We now define a measure μ on \mathbb{A}_{K} as follows. We take as a basis for the σ-algebra of measurable sets all sets of the form $\prod_{v} B_{v}$ with $\mu_{v}\left(B_{v}\right)<\infty$ for all $v \in M_{K}$ and $B_{v}=\mathcal{O}_{v}$ for almost all v. We then define

$$
\mu\left(\prod_{v} B_{v}\right):=\prod_{v} \mu_{v}\left(B_{v}\right)
$$

It is easy to verify that μ is a Radon measure, and it is clearly translation invariant since each of the Haar measures μ_{v} is translation invariant and addition is defined componentwise; note that for any $x \in \mathbb{A}_{K}$ and measurable set $B=\prod_{v} B_{v}$ the set $x+B=\prod_{v}\left(x_{v}+B_{v}\right)$ is also measurable, since $x_{v}+B_{v}=\mathcal{O}_{v}$ whenever $x_{v} \in \mathcal{O}_{v}$ and $B_{v}=\mathcal{O}_{v}$, and this applies to almost all v. It follows from uniqueness of the Haar measure (up to scaling) that μ is a Haar measure on \mathbb{A}_{K} which we henceforth adopt as our normalized Haar measure on \mathbb{A}_{K}.

We now want to understand the behavior of the adele ring \mathbb{A}_{K} under base change. Note that the canonical embedding $K \hookrightarrow \mathbb{A}_{K}$ makes \mathbb{A}_{K} a K-vector space, and if L / K is any finite separable extension of K (also a K-vector space), we may consider the tensor product

$$
\mathbb{A}_{K} \otimes L
$$

which is also an L-vector space. As a topological K-vector space, the topology on $\mathbb{A}_{K} \otimes L$ is just the product topology on $[L: K]$ copies of of \mathbb{A}_{K} (this applies whenever we take a tensor product of topological vector spaces, one of which has finite dimension).

Proposition 22.10. Let L be a finite separable extension of a global field K. There is a canonical isomorphism of topological rings

$$
\mathbb{A}_{K} \otimes_{K} L \simeq \mathbb{A}_{L}
$$

in which the canonical embeddings of $L \simeq K \otimes_{K} L$ into $\mathbb{A}_{K} \otimes_{K} L$ and L into \mathbb{A}_{L} agree.
Proof. The LHS $\mathbb{A}_{K} \otimes_{K} L$ is isomorphic to the restricted product

$$
\prod_{v}\left(K_{v} \otimes_{K} L, \mathcal{O}_{v} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L}\right)
$$

Explicitly, each element of $\mathbb{A}_{K} \otimes_{K} L$ is a finite sum of elements of the form $\left(a_{v}\right) \otimes x$, where $\left(a_{v}\right) \in \mathbb{A}_{K}$ and $x \in L$, and there is a natural isomorphism

$$
\begin{aligned}
\mathbb{A}_{K} \otimes_{K} L & \stackrel{\sim}{\longrightarrow} \coprod_{v \in M_{K}}\left(K_{v} \otimes_{K} L, \mathcal{O}_{v} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L}\right) \\
\left(a_{v}\right) \otimes x & \mapsto\left(a_{v} \otimes x\right)
\end{aligned}
$$

that is both a ring isomorphism and a homeomorphism of topological spaces.
On the RHS we have $\mathbb{A}_{L}:=\prod_{w \in M_{L}}\left(L_{w}, \mathcal{O}_{w}\right)$. But note that $K_{v} \otimes_{K} L \simeq \prod_{w \mid v} L_{w}$, by Theorem 11.4 and $\mathcal{O}_{v} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L} \simeq \prod_{w \mid v} \mathcal{O}_{w}$, by Corollary 11.7. These isomorphisms preserve both the algebraic and the topological structures of both sides, and it follows that

$$
\mathbb{A}_{K} \otimes_{K} L \simeq \coprod_{v \in M_{K}}\left(K_{v} \otimes_{K} L, \mathcal{O}_{v} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L}\right) \simeq \coprod_{w \in M_{L}}\left(L_{w}, \mathcal{O}_{w}\right)=\mathbb{A}_{L}
$$

is an isomorphism of topological rings. The image of $x \in L$ in $\mathbb{A}_{K} \otimes_{K} L$ via the canonical embedding of L into $\mathbb{A}_{K} \otimes_{K} L$ is $1 \otimes x=(1,1,1, \ldots) \otimes x$, whose image $(x, x, x, \ldots) \in \mathbb{A}_{L}$ is equal to the image of $x \in L$ under the canonical embedding of L into its adele ring \mathbb{A}_{L}.

Corollary 22.11. Let L be a finite separable extension of a global field K of degree n. There is a canonical isomorphism of topological K-vector spaces (and locally compact groups)

$$
\mathbb{A}_{L} \simeq \mathbb{A}_{K} \oplus \cdots \oplus \mathbb{A}_{K}
$$

that identifies \mathbb{A}_{K} with the direct sum of n copies of \mathbb{A}_{K}, and this isomorphism restricts to an isomorphism $L \simeq K \oplus \cdots \oplus K$ of the principal adeles of \mathbb{A}_{L} with the n-fold direct sum of the principal adeles of \mathbb{A}_{K}.
Theorem 22.12. Let L be a global field. The principal adeles $L \hookrightarrow \mathbb{A}_{L}$ are a discrete subgroup of the additive group of \mathbb{A}_{L} and the quotient \mathbb{A}_{L} / L of topological groups is compact.
Proof. Let K be the rational subfield of L (so $K=\mathbb{Q}$ or $K=\mathbb{F}_{q}(t)$). It follows from the previous corollary, that if the theorem holds for K then it holds for L, so we will prove the theorem for K. Let us identify $K \hookrightarrow \mathbb{A}_{K}$ with its image in \mathbb{A}_{K} (the principal adeles).

To show that the topological group K is discrete in \mathbb{A}_{K}, it suffices to show that 0 is an isolated point. Consider the open set

$$
U=\left\{a \in \mathbb{A}_{K}:\|a\|_{\infty}<1 \text { and }\|a\|_{v} \leq 1 \text { for all } v<\infty\right\}
$$

where the place $v=\infty$ is the archimedean place when $K=\mathbb{Q}$ and the nonarchimedean place corresponding to the degree valuation $v_{\infty}(f / g)=\operatorname{deg} f-\operatorname{deg} g$ when $\left.K=\mathbb{F}_{q}(t)\right)$. The product formula (Theorem 12.32) implies $\|a\|=1$ for all nonzero principal adeles $a \in \mathbb{A}_{K}$, so the only principal adele in U is 0 . Thus K is a discrete subgroup of \mathbb{A}_{K}.

To prove that the quotient \mathbb{A}_{K} / K is compact, we consider the set

$$
W:=\left\{a \in \mathbb{A}_{K}:\|a\|_{v} \leq 1 \text { for all } v\right\} .
$$

Let $S=\{\infty\} \subseteq M_{K}$ and put $U_{\infty}=\left\{x \in K_{\infty}:\|x\|_{\infty} \leq 1\right\}$. Then

$$
W=U_{\infty} \times \prod_{v \notin S} \mathcal{O}_{v} \subseteq \mathbb{A}_{K, S}
$$

is a product of compact sets and therefore compact as a subspace of $\mathbb{A}_{K, S} \subseteq \mathbb{A}_{K}$.
We now show that W contains a complete set of coset representatives for K in \mathbb{A}_{K}. Let $a=\left(a_{v}\right)$ be any element of \mathbb{A}_{K}. We claim $a=b+c$ for some $b \in W$ and $c \in K$.

For $v<\infty$, let $x_{v}=0$ if $\left\|a_{v}\right\| \leq 1$ (true for almost all v), and otherwise choose $x_{v} \in K$ so that $\left\|a_{v}-x_{v}\right\|_{v} \leq 1$ and $\left\|x_{v}\right\|_{w} \leq 1$ for $w \neq v$; such a x_{v} exists by the "pretty strong" approximation theorem (Theorem 3.29). Now let $c^{\prime}=\sum_{v<\infty} x_{v} \in K \subseteq \mathbb{A}_{K}$ (this is a finite sum because almost all the x_{v} are zero), and choose $x_{\infty} \in \mathcal{O}_{K}$ so that

$$
\left\|a_{\infty}-c_{\infty}^{\prime}-x_{\infty}\right\|_{\infty} \leq 1
$$

When $K=\mathbb{Q}$ we can take $x_{\infty} \in \mathbb{Z}$ to be the nearest integer to the rational number $a_{\infty}-c_{\infty}^{\prime}$. When $K=\mathbb{F}_{q}(t)$, if $a_{\infty}-c_{\infty}^{\prime}=f / g$ with $f, g \in \mathbb{F}_{q}[t]$ relatively prime, we can write $f=h g+f^{\prime}$ for some $h, f^{\prime} \in \mathbb{F}_{q}[t]$ with $\operatorname{deg} f^{\prime}<\operatorname{deg} g$ and let $x_{\infty}=-h$.

Now let $c:=\sum_{v \leq \infty} x_{v} \in K \subseteq \mathbb{A}_{K}$, and let $b:=a-c$. Then $a=b+c$, with $c \in K$, and we claim that $b \in W$. For each $v<\infty$ we have $x_{w} \in \mathcal{O}_{v}$ for all $w \neq v$ and

$$
\|b\|_{v}=\|a-c\|_{v}=\left\|a_{v}-\sum_{w \leq \infty} x_{w}\right\|_{v} \leq \max \left(\left\|a_{v}-x_{v}\right\|_{v}, \max \left(\left\{\left\|x_{w}\right\|_{v}: w \neq v\right\}\right)\right) \leq 1
$$

by the nonarchimedean triangle inequality. For $v=\infty$ we have $\|b\|_{\infty}=\left\|a_{\infty}-c_{\infty}\right\|=$ $\left\|a_{\infty}-c_{\infty}^{\prime}-x_{\infty}\right\| \leq 1$ by our choice of x_{∞}, and therefore $b \in W$ as claimed.

Thus W surjects onto A_{K} / K under the quotient map $\mathbb{A}_{K} \rightarrow \mathbb{A}_{K} / K$. The quotient map is continuous, so the image \mathbb{A}_{K} / K of the compact set W must be compact.

22.4 Strong approximation

We are now ready to prove the strong approximation theorem (Theorem 3.27) that we recorded back in Lecture 3 but have so far not used. 4 In order to prove it we first prove an adelic version of the Blichfeldt-Minkowski lemma.

Lemma 22.13 (Blichfeldt-Minkowski lemma). Let K be a global field. There is a positive constant C such that for any $x \in \mathbb{A}_{K}$ with $\|x\|>C$ there exists a nonzero principal adele $y \in K \subseteq \mathbb{A}_{K}$ for which $\|y\|_{v} \leq\|x\|_{v}$ for all $v \in M_{K}$.

Proof. Let $c_{0}:=\operatorname{covol}(K)$ be the measure of a fundamental region for K in \mathbb{A}_{K} under our normalized Haar measure μ on \mathbb{A}_{K} (by Theorem $22.12, K$ is cocompact so c_{0} is finite). Now define

$$
c_{1}:=\mu\left(\left\{z \in \mathbb{A}_{K}:\|z\|_{v} \leq 1 \text { and }\|z\|_{v} \leq \frac{1}{4} \text { if } v \text { is archimedean }\right\}\right) .
$$

Then $c_{1} \neq 0$, since K has only finitely many archimedean places, and we put $C:=c_{0} / c_{1}-\frac{5}{\square}$
Suppose $x \in \mathbb{A}_{K}$ satisfies $\|x\|>C$. We know that $\|x\|_{v} \leq 1$ for all almost all v, so $\|x\|>C$ implies that $\|x\|_{v}=1$ for almost all v. Let us now consider the set

$$
T:=\left\{t \in \mathbb{A}_{K}:\|t\|_{v} \leq\|x\|_{v} \text { and }\|t\|_{v} \leq \frac{1}{4}\|x\|_{v} \text { if } v \text { is archimedean }\right\} .
$$

From the definition of c_{1} we have

$$
\mu(T)=c_{1}\|x\|>c_{1} C=c_{0}
$$

this follows from the fact that the Haar measure on \mathbb{A}_{K} is the product of the normalized Haar measures μ_{v} on each of the K_{v}. Since $\mu(T)>c_{0}$, the set T cannot lie in a fundamental region for K, so there must be distinct $t_{1}, t_{2} \in T$ with the same image in \mathbb{A}_{K} / K, equivalently, whose difference $y=t_{1}-t_{2}$ is a nonzero element of $K \subseteq \mathbb{A}_{K}$. We then have

$$
\left\|t_{1}-t_{2}\right\|_{v} \leq \begin{cases}\max \left(\left\|t_{1}\right\|_{v},\left\|t_{2}\right\|_{v}\right) \leq\|x\|_{v} & \text { nonarch. } v \\ \left\|t_{1}\right\|_{v}+\left\|t_{2}\right\|_{v} \leq 2 \cdot \frac{1}{4}\|x\|_{v} \leq \frac{1}{2}\|x\|_{v} & \text { real } v \\ \left(\left\|t_{1}-t_{2}\right\|_{v}^{1 / 2}\right)^{2} \leq\left(\left\|t_{1}\right\|_{v}^{1 / 2}+\left\|t_{2}\right\|_{v}^{1 / 2}\right)^{2} \leq\left(2 \cdot \frac{1}{2}\|x\|_{v}^{1 / 2}\right)^{2} \leq\|x\|_{v} & \text { complex } v\end{cases}
$$

Here we have used the fact that the normalized absolute value $\left\|\|_{v}\right.$ satisfies the nonarchimedean triangle inequality when v is nonarchimedean, $\left\|\|_{v}\right.$ satisfies the archimedean triangle inequality when v is real, and $\left\|\|_{v}^{1 / 2}\right.$ satisfies the archimedean triangle inequality when v is complex. Thus $\|y\|_{v}=\left\|t_{1}-t_{2}\right\| \leq\|x\|_{v}$ for all places $v \in M_{K}$ as desired.

Theorem 22.14 (Strong Approximation). Let K be a global field and let $M_{K}=S \sqcup$ $T \sqcup\{w\}$ be a partition of the places of K with S finite. For each $v \in S$, let a_{v} be an element of K and let $\epsilon_{v} \in \mathbb{R}_{>0}$. Then there exists an $x \in K$ for which

$$
\begin{array}{r}
\left\|x-a_{v}\right\|_{v} \leq \epsilon_{v} \text { for all } v \in S, \\
\|x\|_{v} \leq 1 \text { for all } v \in T,
\end{array}
$$

(with no constraint on $\|x\|_{w}$).

[^2]Proof. Let $W=\left\{z \in \mathbb{A}_{K}:\|z\|_{v} \leq 1\right.$ for all $\left.v \in M_{K}\right\}$ as in the proof of Theorem 22.12. Then W contains a complete set of coset representatives for $K \subseteq \mathbb{A}_{K}$, so $\mathbb{A}_{K}=K \overline{+W}$. For any nonzero $u \in K \subseteq \mathbb{A}_{K}$ we also have $\mathbb{A}_{K}=K+u W$: given $c \in \mathbb{A}_{K}$ write $u^{-1} c \in \mathbb{A}_{K}$ as $u^{-1} c=a+b$ with $a \in K$ and $b \in W$ and then $c=u a+u b$ with $u a \in K$ and $u b \in u W$. Now choose $z \in \mathbb{A}_{K}$ such that

$$
0<\|z\|_{v} \leq \epsilon_{v} \text { for } v \in S, \quad 0<\|z\|_{v} \leq 1 \text { for } v \in T, \quad\|z\|_{w}>C \prod_{v \neq w}\|z\|_{v}^{-1}
$$

where C is the constant in Lemma 22.13 (this is clearly possible). We then have $\|z\|>C$, and by Lemma 22.13 there is a nonzero $u \in K \subseteq \mathbb{A}_{K}$ with $\|u\|_{v} \leq\|z\|_{v}$ for all $v \in M_{K}$.

Now consider the adele $a=\left(a_{v}\right) \in \mathbb{A}_{K}$ with $a_{v}=0$ for $v \notin S$ (for $v \in S$ the value of a_{v} is given by the hypothesis of the theorem). We have $\mathbb{A}_{K}=K+u W$, so $a=x+y$ for some $x \in K$ and $y \in u W$. Therefore

$$
\left\|x-a_{v}\right\|=\|y\|_{v} \leq\|u\|_{v} \leq\|z\|_{v} \leq \begin{cases}\epsilon_{v} & \text { for } v \in S \\ 1 & \text { for } v \in T\end{cases}
$$

as desired.
Remark 22.15. Theorem 22.14 can be generalized to algebraic groups (the global field K can be viewed as the algebraic group $\mathrm{GL}_{1}(K)$, an affine line); see [1] for a survey.

Corollary 22.16. Let K be a global field and let w be any place of K. Then K is dense in the restricted product $\prod_{v \neq w}\left(K_{v}, \mathcal{O}_{v}\right)$.

References

[1] Andrei S. Rapinchuk, Strong approximation for algebraic groups, Thin groups and superstrong approximation, MSRI Publications 61, 2013.

MIT OpenCourseWare
http://ocw.mit.edu

18.785 Number Theory I

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The topology on the coproduct $\amalg X_{S}$ is the weakest topology that makes all the injections $X_{S} \hookrightarrow \amalg X_{S}$ continuous; its open sets are simply unions of open sets the X_{S}.

[^1]: ${ }^{2}$ Per Remark 22.2, as far as the topology goes it doesn't matter how we define \mathcal{O}_{v} at the archimedean places, but we would like every \mathcal{O}_{v} to be a topological ring, which motivates this choice.
 ${ }^{3}$ In French one writes adèle, but it is common practice to omit the accent when writing in English.

[^2]: ${ }^{4}$ We have made do with the pretty strong approximation theorem (Theorem 3.29).
 ${ }^{5}$ With our canonical normalization of μ we will actually get the same C for all \bar{K}, but we don't need this. With a little more care one can show that in fact $C=1$ works.

