22 The ring of adeles, strong approximation

22.1 Introduction to adelic rings

Recall that we have a canonical injection

$$\mathbb{Z} \hookrightarrow \hat{\mathbb{Z}} := \varprojlim_{n} \mathbb{Z}/n\mathbb{Z} \simeq \prod_{p} \mathbb{Z}_{p},$$

that embeds \mathbb{Z} into the product of its nonarchimedean completions. Each of the rings \mathbb{Z}_p is compact, hence $\hat{\mathbb{Z}} = \prod_p \mathbb{Z}_p$ is compact (by Tychonoff's theorem). But notice that if we consider the analogous product $\prod_p \mathbb{Q}_p$ of the completions of \mathbb{Q} , each of the local fields \mathbb{Q}_p is locally compact (including the archimedean field $\mathbb{Q}_{\infty} = \mathbb{R}$), but the product $\prod_p \mathbb{Q}_p$ is **not locally compact**. Local compactness is important to us, because it gives us a Haar measure (recall that any locally compact group has a translation-invariant measure that is unique up to scaling), a tool we would very much like to have at our disposal.

To see where the problem arises, recall that for any family of topological spaces $(X_i)_{i\in I}$ (here the index set I may be any set), the product topology on the set $X:=\prod X_i$ is, by definition, the weakest topology that makes the projection maps $\pi_i\colon X\to X_i$ continuous; this means it is generated by open sets of the form $\pi_i^{-1}(U_i)$ with $U_i\subseteq X_i$ open, and therefore every open set in X is a (possibly empty) union of open sets of the form

$$\prod_{i \in S} U_i \times \prod_{i \in I - S} X_i,$$

with $S \subseteq I$ finite and each $U_i \subseteq X_i$ open (these sets form a basis for the topology on X). In particular, every open set $U \subseteq X$ will have $\pi_i(U) = X_i$ for all but finitely many $i \in I$, so unless all but finitely many of the X_i are compact, the space X cannot possibly be locally compact for the simple reason that no compact set C in X contains a nonempty open set (if it did then we would have $\pi_i(C) = X_i$ compact for all but finitely many $i \in I$). Recall that for X to be locally compact means that every $x \in X$ we have $x \in U \subseteq C$ for some open set U and compact set C (so C is a compact neighborhood of x).

To solve this problem we want to take the product of the fields \mathbb{Q}_p (or more generally, the completions of any global field) in a different way that yields a locally compact topological ring. This leads us to the *restricted product* which is a purely topological construction, but one that was invented essentially for the purpose of solving this number-theoretic problem.

22.2 Restricted products

This section is purely about the topology of restricted products; readers familiar with restricted products should feel free to skip to the next section.

Definition 22.1. Let (X_i) be a family of topological spaces indexed by $i \in I$, and let (U_i) be a family of open sets $U_i \subseteq X_i$. The restricted product $\prod (X_i, U_i)$ is the topological space

$$\prod (X_i, U_i) := \left\{ (x_i) \in \prod X_i : x_i \in U_i \text{ for almost all } i \in I \right\}$$

with the basis of open sets

$$\mathcal{B} := \left\{ \prod V_i : V_i \subseteq X_i \text{ is open for all } i \in I \text{ and } V_i = U_i \text{ for almost all } i \in I \right\},$$

where almost all means all but finitely many.

For each $i \in I$ we have a projection map $\pi_i : \prod(X_i, U_i) \to X_i$ defined by $(x_i) \mapsto x_i$; each π_i is continuous, since if U_i is an open subset of X_i , then $\pi_i^{-1}(U_i)$ is the union of all $V = \prod V_i \in \mathcal{B}$ with $V_i = U_i$, which is open.

As sets, we always have

$$\prod U_i \subseteq \prod (X_i, U_i) \subseteq \prod X_i,$$

but in general the restricted product topology on $\prod (X_i, U_i)$ is not the same as the subspace topology it inherits as a subset of $\prod X_i$; it has more open sets. For example, $\prod U_i$ is open in $\prod (X_i, U_i)$ but not in $\prod X_i$, unless $U_i = X_i$ for almost all i, in which case $\prod (X_i, U_i) = \prod X_i$ (both as sets and as topological spaces). Thus the restricted product is a generalization of the direct product and the two coincide if and only if $U_i = X_i$ for almost all i; note that this is automatically true when I is finite, so only infinite restricted products are interesting.

Remark 22.2. The restricted product does not depend on any particular U_i . Indeed,

$$\prod(X_i, U_i) = \prod(X_i, U_i')$$

whenever $U_i' = U_i$ for almost all i; note that the two restricted products are not merely isomorphic, they are identical, both as sets and as topological spaces. It is thus enough to specify the U_i for all but finitely many $i \in I$.

Each $x \in X := \prod (X_i, U_i)$ distinguishes a finite subset $S = S(x) \subseteq I$, namely, the set of indices i for which $x_i \notin U_i$ (this may be the empty set). It is thus natural to consider

$$X_S := \{x \in X : S(x) = S\} = \prod_{i \in S} X_i \times \prod_{i \notin S} U_i.$$

Notice that $X_S \in \mathcal{B}$ is an open set, and we can view it as a topological space in two ways: as a subspace of X or as a direct product of certain X_i and U_i . But notice that restricting the basis \mathcal{B} for X to a basis for the subspace X_S yields

$$\mathcal{B}_S := \left\{ \prod V_i : V_i \subseteq \pi_i(X_S) \text{ is open and } V_i = U_i = \pi_i(X_S) \text{ for almost all } i \in I \right\},$$

which is just the standard basis for the product topology on X_S , so the two coincide.

We have $X_S \subseteq X_T$ if and only if $S \subseteq T$, thus if we partially order the finite subsets $S \subseteq I$ by inclusion, the X_S and the inclusion maps $i_{ST} \colon X_S \hookrightarrow X_T$ form a direct system, and we can consider the corresponding direct limit

$$\varinjlim_{S} X_{S}$$
,

which is the quotient of the coproduct space¹ $\coprod X_S$ by the equivalence relation $x \sim i_{ST}(x)$ for all $x \in S \subseteq T$. This direct limit is canonically isomorphic to the restricted product X, which gives us another way to define the restricted product; before proving this list us recall the general definition of a direct limit of topological spaces.

Definition 22.3. A direct system (or inductive system) in a category is a family of objects $\{X_i : i \in I\}$ indexed by a directed set I (see Definition 8.15) and a family of morphisms $\{f_{ij} : X_i \to X_j : i \leq j\}$ such that each f_{ii} is the identity and $f_{ik} = f_{jk} \circ f_{ij}$ for all $i \leq j \leq k$.

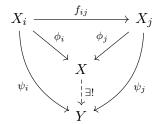
¹The topology on the coproduct $\coprod X_S$ is the weakest topology that makes all the injections $X_S \hookrightarrow \coprod X_S$ continuous; its open sets are simply unions of open sets the X_S .

Definition 22.4. Let (X_i, f_{ij}) be a direct system of topological spaces. The *direct limit* (or *inductive limit*) of (X_i, f_{ij}) is the quotient space

$$X = \varinjlim X_i := \coprod_{i \in I} X_i / \sim,$$

where $x_i \sim f_{ij}(x_i)$ for all $i \leq j$. The pullbacks $\phi_i \colon X_i \to X$ of the quotient map $\coprod X_i \to X$ satisfy $\phi_i = \phi_j \circ f_{ij}$ for $i \leq j$.

The topological space $X = \varinjlim X_i$ has the universal property that if Y is another topological space with continuous maps $\psi_i \colon X_i \to Y$ that satisfy $\psi_i = \psi_j \circ f_{ij}$ for $i \leq j$, then there is a unique continuous map $X \to Y$ for which all of the diagrams



commute (this universal property defines the direct limit in any category with coproducts).

We now prove that that $\prod (X_i, U_i) \simeq \varinjlim X_S$ as claimed above.

Proposition 22.5. Let (X_i) be a family of topological spaces indexed by $i \in I$, let (U_i) be a family of open sets $U_i \subseteq X_i$, and let $X := \prod (X_i, U_i)$ be the corresponding restricted product. For each finite $S \subseteq I$ define

$$X_S := \prod_{i \in S} X_i \times \prod_{i \notin S} U_i \subseteq X,$$

and inclusion maps $i_{ST} \colon X_S \hookrightarrow X_T$, and let $\varinjlim X_S$ be the corresponding direct limit. There is a canonical homeomorphism of topological spaces

$$\varphi \colon X \stackrel{\sim}{\longrightarrow} \varinjlim X_S$$

that sends $x \in X$ to the equivalence class of $x \in X_{S(x)} \subseteq \coprod X_S$ in $\varinjlim X_S := \coprod X_S / \sim$, where $S(x) := \{i \in I : x_i \notin U_i\}$.

Proof. To prove that the map $\varphi: X \to \varinjlim X_S$ is a homeomorphism, we need to show that it is (1) a bijection, (2) continuous, and $\overline{(3)}$ an open map.

- (1) For each equivalence class $\mathcal{C} \in \varinjlim X_S := \coprod X_S / \sim$, let $S(\mathcal{C})$ be the intersection of all the sets S for which \mathcal{C} contains an element of $\coprod X_S$ in X_S . Then $S(x) = S(\mathcal{C})$ for all $x \in \mathcal{C}$, and \mathcal{C} contains a unique element for which $x \in X_{S(x)} \subseteq \coprod X_S$. Thus φ is a bijection.
- (2) Let U be an open set in $\varinjlim X_S = \coprod X_S / \sim$. The inverse image V of U in $\coprod X_S$ is open, as are the inverse images V_S of V under the canonical injections $\iota \colon X_S \hookrightarrow \coprod X_S$. The union of the V_S in X is equal to $\varphi^{-1}(U)$ and is an open set in X; thus φ is continuous.
- (3) Let U be an open set in X. Since the X_S form an open cover of X, we can cover U with open sets $U_S = U \cap X_S$, and then $\coprod U_S$ is an open set in $\coprod X_S$. Moreover, for each $x \in \coprod U_S$, if $y \sim x$ for some $y \in \coprod X_S$ then y and x must correspond to the same element in U; in particular, $y \in \coprod U_S$, so $\coprod U_S$ is a union of equivalence classes in $\coprod X_S$. It follows that its image in $\lim_{X \to X_S} X_S = \lim_{X \to X_S} X_$

Proposition 22.5 gives us another way to construct the restricted product $\prod (X_i, U_i)$: rather than defining it as a subset of $\prod X_i$ with a modified topology, we can instead construct it as a limit of direct products that are subspaces of $\prod X_i$.

We now specialize to the case of interest, where we are forming a restricted product using a family $(X_i)_{i\in I}$ of locally compact spaces and a family of open subsets (U_i) that are almost all compact. Under these conditions the restricted product $\prod (X_i, U_i)$ is locally compact, even though the product $\prod X_i$ is not unless the index set I is finite.

Proposition 22.6. Let $(X_i)_{i\in I}$ be a family of locally compact topological spaces and let $(U_i)_{i\in I}$ be a corresponding family of open subsets $U_i\subseteq X_i$ almost all of which are compact. Then the restricted product $X:=\prod (X_i,U_i)$ is locally compact.

Proof. We first note that for each finite set $S \subseteq I$ the topological space

$$X_S := \prod_{i \in S} X_i \times \prod_{i \notin S} U_i$$

can be viewed as a finite product of locally compact spaces, since all but finitely many of the U_i are compact and the product of these is compact (by Tychonoff's theorem), hence locally compact. A finite product of locally compact spaces is always locally compact, since we can construct compact neighborhoods as products of compact neighborhoods in each factor (the key point is that in a finite product, products of open sets are open); thus the X_S are all locally compact, and the X_S cover X (since each $x \in X$ lies in $X_{S(x)}$). It follows that X is locally compact, since each $x \in X_S$ has a compact neighborhood $x \in U \subseteq C \subseteq X_S$ that is also a compact neighborhood in X (every open cover of X_S in X_S that must have a finite subcover, so X_S is compact in X_S and X_S is open).

22.3 The ring of adeles

Recall that for a global field K (finite extension of \mathbb{Q} or $\mathbb{F}_q(t)$), we use M_K to denote the set of places of K (equivalence classes of absolute values), and for any $v \in M_K$ we use K_v to denote the corresponding local field (the completion of K with respect to v), and define $\mathcal{O}_v := K_v$ when v is nonarchimedean.

Definition 22.7. Let K be a global field. The adele ring³ of K is the restricted product

$$\mathbb{A}_K := \prod (K_v, \mathcal{O}_v)_{v \in M_K},$$

which we may view as a subset (but not a subspace!) of $\prod_{v} K_{v}$; indeed

$$\mathbb{A}_K = \left\{ (a_v) \in \prod K_v : a_v \in \mathcal{O}_v \text{ for almost all } v \right\},\,$$

and for each $a \in \mathbb{A}_K$ we use a_v to denote its projection in K_v ; we make \mathbb{A}_K a ring by defining addition and multiplication component-wise (closure is clear).

For each finite set of places S we have the subring of S-adeles

$$\mathbb{A}_{K,S} := \prod_{v \in S} K_v \times \prod_{v \notin S} \mathcal{O}_v,$$

²Per Remark 22.2, as far as the topology goes it doesn't matter how we define \mathcal{O}_v at the archimedean places, but we would like every \mathcal{O}_v to be a topological ring, which motivates this choice.

³In French one writes adèle, but it is common practice to omit the accent when writing in English.

which is a direct product of topological rings. By Proposition 22.5, $\mathbb{A}_K \simeq \varinjlim \mathbb{A}_{K,S}$ is the direct limit of the S-adele rings, which makes it clear that \mathbb{A}_K is also a topological ring.

The canonical embeddings $K \hookrightarrow K_v$ induce the canonical embedding

$$K \hookrightarrow \mathbb{A}_K$$

 $x \mapsto (x, x, x, \ldots)$

since for each $x \in K$ we have $x \in \mathcal{O}_v$ for all but finitely many v. The image of K in \mathbb{A}_K forms the subring of *principal adeles* (which of course is also a field).

We extend the normalized absolute value $\| \|_v$ of K_v (see Definition 12.28) to \mathbb{A}_K via

$$||a||_v := ||a_v||_v$$

and define the adelic absolute value (or adelic norm)

$$||a|| := \prod_{v \in M_K} ||a||_v \in \mathbb{R}_{\geq 0}$$

which we note converges because $||a||_v \leq 1$ for almost all v. For $||a|| \neq 0$ this is equal to the size of the M_K -divisor ($||a||_v$) we defined in Lecture 14 (see Definition 14.1). For any nonzero principal adele a we necessarily have ||a|| = 1, by the product formula (Theorem 12.32).

Example 22.8. For $K = \mathbb{Q}$ the adele ring $\mathbb{A}_{\mathbb{Q}}$ is the union of the rings

$$\mathbb{A}_{\mathbb{Q},S} = \mathbb{R} \times \prod_{p \in S} \mathbb{Q}_p \times \prod_{p \notin S} \mathbb{Z}_p.$$

Taking $S = \emptyset$ yields the ring $\mathbb{A}_{\mathbb{Z}} := \mathbb{R} \times \prod_{p < \infty} \mathbb{Z}_p \simeq \mathbb{R} \times \hat{\mathbb{Z}}$ of integral adeles. We can also write $\mathbb{A}_{\mathbb{Q}}$ as

$$\mathbb{A}_{\mathbb{Q}} = \left\{ a \in \prod_{p \le \infty} \mathbb{Q}_p : \|a\|_p \le 1 \text{ for almost all } p \right\}.$$

Proposition 22.9. The adele ring \mathbb{A}_K of a global field K is locally compact and Hausdorff.

Proof. Local compactness follows from Proposition 22.6, since the local fields K_v are all locally compact and all but finitely many \mathcal{O}_v are valuation rings of a nonarchimedean local field, hence compact $(\mathcal{O}_v = \{x \in K_v : ||x||_v \leq 1\})$ is a closed ball in a metric space). If $x, y \in \mathbb{A}_K$ are distinct then $x_v \neq y_v$ for some $v \in M_K$, and since K_v is Hausdorff we can separate x_v and y_v by open sets whose inverse images under the projection map $\pi_v \colon \mathbb{A}_K \to K_v$ are open sets separating x and y; thus \mathbb{A}_K is Hausdorff. \square

Proposition 22.9 implies that the additive group of \mathbb{A}_K (which is sometimes denoted \mathbb{A}_K^+ to emphasize that we are viewing it as a group rather than a ring) is a locally compact group, and therefore has a Haar measure that is unique up to scaling. Each of the completions K_v is a local field with a Haar measure μ_v that we normalize as follows:

- $\mu_v(\mathcal{O}_v) = 1$ for all nonarchimedean v;
- $\mu_v(S) = \mu_{\mathbb{R}}(S)$ for $K_v \simeq \mathbb{R}$, where $\mu_{\mathbb{R}}(S)$ is the standard Euclidean measure on \mathbb{R} ;
- $\mu_v(S) = 2\mu_{\mathbb{C}}(S)$ for $K_v \simeq \mathbb{C}$, where $\mu_{\mathbb{C}}(S)$ is the standard Euclidean measure on $\mathbb{C} \sim \mathbb{R} \times \mathbb{R}$

Note that the normalization of μ_v at the archimedean places is consistent with the canonical measure μ on $K_{\mathbb{R}} \simeq \mathbb{R}^r \times \mathbb{C}^s \simeq \mathbb{R}^n$ induced by the canonical inner product on $K_{\mathbb{R}} \subseteq K_{\mathbb{C}}$ that we defined in Lecture 13 (see §13.2).

We now define a measure μ on \mathbb{A}_K as follows. We take as a basis for the σ -algebra of measurable sets all sets of the form $\prod_v B_v$ with $\mu_v(B_v) < \infty$ for all $v \in M_K$ and $B_v = \mathcal{O}_v$ for almost all v. We then define

$$\mu\left(\prod_{v}B_{v}\right):=\prod_{v}\mu_{v}(B_{v}).$$

It is easy to verify that μ is a Radon measure, and it is clearly translation invariant since each of the Haar measures μ_v is translation invariant and addition is defined componentwise; note that for any $x \in \mathbb{A}_K$ and measurable set $B = \prod_v B_v$ the set $x + B = \prod_v (x_v + B_v)$ is also measurable, since $x_v + B_v = \mathcal{O}_v$ whenever $x_v \in \mathcal{O}_v$ and $B_v = \mathcal{O}_v$, and this applies to almost all v. It follows from uniqueness of the Haar measure (up to scaling) that μ is a Haar measure on \mathbb{A}_K which we henceforth adopt as our normalized Haar measure on \mathbb{A}_K .

We now want to understand the behavior of the adele ring \mathbb{A}_K under base change. Note that the canonical embedding $K \hookrightarrow \mathbb{A}_K$ makes \mathbb{A}_K a K-vector space, and if L/K is any finite separable extension of K (also a K-vector space), we may consider the tensor product

$$\mathbb{A}_K \otimes L$$
,

which is also an L-vector space. As a topological K-vector space, the topology on $\mathbb{A}_K \otimes L$ is just the product topology on [L:K] copies of \mathbb{A}_K (this applies whenever we take a tensor product of topological vector spaces, one of which has finite dimension).

Proposition 22.10. Let L be a finite separable extension of a global field K. There is a canonical isomorphism of topological rings

$$\mathbb{A}_K \otimes_K L \simeq \mathbb{A}_L$$

in which the canonical embeddings of $L \simeq K \otimes_K L$ into $\mathbb{A}_K \otimes_K L$ and L into \mathbb{A}_L agree.

Proof. The LHS $\mathbb{A}_K \otimes_K L$ is isomorphic to the restricted product

$$\prod_{v} (K_v \otimes_K L, \mathcal{O}_v \otimes_{\mathcal{O}_K} \mathcal{O}_L).$$

Explicitly, each element of $\mathbb{A}_K \otimes_K L$ is a finite sum of elements of the form $(a_v) \otimes x$, where $(a_v) \in \mathbb{A}_K$ and $x \in L$, and there is a natural isomorphism

$$\mathbb{A}_K \otimes_K L \xrightarrow{\sim} \prod_{v \in M_K} (K_v \otimes_K L, \mathcal{O}_v \otimes_{\mathcal{O}_K} \mathcal{O}_L)$$
$$(a_v) \otimes x \mapsto (a_v \otimes x)$$

that is both a ring isomorphism and a homeomorphism of topological spaces.

On the RHS we have $\mathbb{A}_L := \prod_{w \in M_L} (L_w, \mathcal{O}_w)$. But note that $K_v \otimes_K L \simeq \prod_{w|v} L_w$, by Theorem 11.4 and $\mathcal{O}_v \otimes_{\mathcal{O}_K} \mathcal{O}_L \simeq \prod_{w|v} \mathcal{O}_w$, by Corollary 11.7. These isomorphisms preserve both the algebraic and the topological structures of both sides, and it follows that

$$\mathbb{A}_K \otimes_K L \simeq \prod_{v \in M_K} (K_v \otimes_K L, \mathcal{O}_v \otimes_{\mathcal{O}_K} \mathcal{O}_L) \simeq \prod_{w \in M_L} (L_w, \mathcal{O}_w) = \mathbb{A}_L$$

is an isomorphism of topological rings. The image of $x \in L$ in $\mathbb{A}_K \otimes_K L$ via the canonical embedding of L into $\mathbb{A}_K \otimes_K L$ is $1 \otimes x = (1, 1, 1, ...) \otimes x$, whose image $(x, x, x, ...) \in \mathbb{A}_L$ is equal to the image of $x \in L$ under the canonical embedding of L into its adele ring \mathbb{A}_L . \square

Corollary 22.11. Let L be a finite separable extension of a global field K of degree n. There is a canonical isomorphism of topological K-vector spaces (and locally compact groups)

$$\mathbb{A}_L \simeq \mathbb{A}_K \oplus \cdots \oplus \mathbb{A}_K$$

that identifies \mathbb{A}_K with the direct sum of n copies of \mathbb{A}_K , and this isomorphism restricts to an isomorphism $L \simeq K \oplus \cdots \oplus K$ of the principal adeles of \mathbb{A}_L with the n-fold direct sum of the principal adeles of \mathbb{A}_K .

Theorem 22.12. Let L be a global field. The principal adeles $L \hookrightarrow \mathbb{A}_L$ are a discrete subgroup of the additive group of \mathbb{A}_L and the quotient \mathbb{A}_L/L of topological groups is compact.

Proof. Let K be the rational subfield of L (so $K = \mathbb{Q}$ or $K = \mathbb{F}_q(t)$). It follows from the previous corollary, that if the theorem holds for K then it holds for L, so we will prove the theorem for K. Let us identify $K \hookrightarrow \mathbb{A}_K$ with its image in \mathbb{A}_K (the principal adeles).

To show that the topological group K is discrete in \mathbb{A}_K , it suffices to show that 0 is an isolated point. Consider the open set

$$U = \{a \in \mathbb{A}_K : ||a||_{\infty} < 1 \text{ and } ||a||_v \le 1 \text{ for all } v < \infty \},$$

where the place $v=\infty$ is the archimedean place when $K=\mathbb{Q}$ and the nonarchimedean place corresponding to the degree valuation $v_{\infty}(f/g)=\deg f-\deg g$ when $K=\mathbb{F}_q(t)$). The product formula (Theorem 12.32) implies ||a||=1 for all nonzero principal adeles $a\in \mathbb{A}_K$, so the only principal adele in U is 0. Thus K is a discrete subgroup of \mathbb{A}_K .

To prove that the quotient \mathbb{A}_K/K is compact, we consider the set

$$W := \{ a \in \mathbb{A}_K : ||a||_v \le 1 \text{ for all } v \}.$$

Let $S = {\infty} \subseteq M_K$ and put $U_{\infty} = {x \in K_{\infty} : ||x||_{\infty} \le 1}$. Then

$$W = U_{\infty} \times \prod_{v \notin S} \mathcal{O}_v \subseteq \mathbb{A}_{K,S}$$

is a product of compact sets and therefore compact as a subspace of $\mathbb{A}_{K,S} \subseteq \mathbb{A}_K$.

We now show that W contains a complete set of coset representatives for K in \mathbb{A}_K . Let $a=(a_v)$ be any element of \mathbb{A}_K . We claim a=b+c for some $b\in W$ and $c\in K$.

For $v < \infty$, let $x_v = 0$ if $||a_v|| \le 1$ (true for almost all v), and otherwise choose $x_v \in K$ so that $||a_v - x_v||_v \le 1$ and $||x_v||_w \le 1$ for $w \ne v$; such a x_v exists by the "pretty strong" approximation theorem (Theorem 3.29). Now let $c' = \sum_{v < \infty} x_v \in K \subseteq \mathbb{A}_K$ (this is a finite sum because almost all the x_v are zero), and choose $x_\infty \in \mathcal{O}_K$ so that

$$||a_{\infty} - c_{\infty}' - x_{\infty}||_{\infty} \le 1.$$

When $K = \mathbb{Q}$ we can take $x_{\infty} \in \mathbb{Z}$ to be the nearest integer to the rational number $a_{\infty} - c'_{\infty}$. When $K = \mathbb{F}_q(t)$, if $a_{\infty} - c'_{\infty} = f/g$ with $f, g \in \mathbb{F}_q[t]$ relatively prime, we can write f = hg + f' for some $h, f' \in \mathbb{F}_q[t]$ with $\deg f' < \deg g$ and let $x_{\infty} = -h$.

Now let $c:=\sum_{v\leq\infty}x_v\in K\subseteq\mathbb{A}_K$, and let b:=a-c. Then a=b+c, with $c\in K$, and we claim that $b\in W$. For each $v<\infty$ we have $x_w\in\mathcal{O}_v$ for all $w\neq v$ and

$$||b||_v = ||a - c||_v = \left||a_v - \sum_{w \le \infty} x_w\right||_v \le \max\left(||a_v - x_v||_v, \max(\{||x_w||_v : w \ne v\})\right) \le 1,$$

by the nonarchimedean triangle inequality. For $v = \infty$ we have $||b||_{\infty} = ||a_{\infty} - c_{\infty}|| = ||a_{\infty} - c_{\infty}|| = ||a_{\infty} - c_{\infty}|| \le 1$ by our choice of x_{∞} , and therefore $b \in W$ as claimed.

Thus W surjects onto A_K/K under the quotient map $\mathbb{A}_K \to \mathbb{A}_K/K$. The quotient map is continuous, so the image \mathbb{A}_K/K of the compact set W must be compact.

22.4 Strong approximation

We are now ready to prove the strong approximation theorem (Theorem 3.27) that we recorded back in Lecture 3 but have so far not used.⁴ In order to prove it we first prove an adelic version of the Blichfeldt-Minkowski lemma.

Lemma 22.13 (Blichfeldt-Minkowski lemma). Let K be a global field. There is a positive constant C such that for any $x \in \mathbb{A}_K$ with ||x|| > C there exists a nonzero principal adele $y \in K \subseteq \mathbb{A}_K$ for which $||y||_v \le ||x||_v$ for all $v \in M_K$.

Proof. Let $c_0 := \operatorname{covol}(K)$ be the measure of a fundamental region for K in \mathbb{A}_K under our normalized Haar measure μ on \mathbb{A}_K (by Theorem 22.12, K is cocompact so c_0 is finite). Now define

$$c_1 := \mu\left(\left\{z \in \mathbb{A}_K : \|z\|_v \le 1 \text{ and } \|z\|_v \le \frac{1}{4} \text{ if } v \text{ is archimedean}\right\}\right).$$

Then $c_1 \neq 0$, since K has only finitely many archimedean places, and we put $C := c_0/c_1$. Suppose $x \in \mathbb{A}_K$ satisfies ||x|| > C. We know that $||x||_v \leq 1$ for all almost all v, so ||x|| > C implies that $||x||_v = 1$ for almost all v. Let us now consider the set

$$T := \{ t \in \mathbb{A}_K : ||t||_v \le ||x||_v \text{ and } ||t||_v \le \frac{1}{4} ||x||_v \text{ if } v \text{ is archimedean} \}.$$

From the definition of c_1 we have

$$\mu(T) = c_1 ||x|| > c_1 C = c_0;$$

this follows from the fact that the Haar measure on \mathbb{A}_K is the product of the normalized Haar measures μ_v on each of the K_v . Since $\mu(T) > c_0$, the set T cannot lie in a fundamental region for K, so there must be distinct $t_1, t_2 \in T$ with the same image in \mathbb{A}_K/K , equivalently, whose difference $y = t_1 - t_2$ is a nonzero element of $K \subseteq \mathbb{A}_K$. We then have

$$||t_1 - t_2||_v \le \begin{cases} \max(||t_1||_v, ||t_2||_v) \le ||x||_v & \text{nonarch. } v; \\ ||t_1||_v + ||t_2||_v \le 2 \cdot \frac{1}{4} ||x||_v \le \frac{1}{2} ||x||_v & \text{real } v; \\ (||t_1 - t_2||_v^{1/2})^2 \le (||t_1||_v^{1/2} + ||t_2||_v^{1/2})^2 \le (2 \cdot \frac{1}{2} ||x||_v^{1/2})^2 \le ||x||_v & \text{complex } v. \end{cases}$$

Here we have used the fact that the normalized absolute value $\| \|_v$ satisfies the nonarchimedean triangle inequality when v is nonarchimedean, $\| \|_v$ satisfies the archimedean triangle inequality when v is real, and $\| \|_v^{1/2}$ satisfies the archimedean triangle inequality when v is complex. Thus $\|y\|_v = \|t_1 - t_2\| \le \|x\|_v$ for all places $v \in M_K$ as desired. \square

Theorem 22.14 (STRONG APPROXIMATION). Let K be a global field and let $M_K = S \sqcup T \sqcup \{w\}$ be a partition of the places of K with S finite. For each $v \in S$, let a_v be an element of K and let $\epsilon_v \in \mathbb{R}_{>0}$. Then there exists an $x \in K$ for which

$$||x - a_v||_v \le \epsilon_v \text{ for all } v \in S,$$

 $||x||_v \le 1 \text{ for all } v \in T,$

(with no constraint on $||x||_w$).

⁴We have made do with the pretty strong approximation theorem (Theorem 3.29).

⁵With our canonical normalization of μ we will actually get the same C for all K, but we don't need this. With a little more care one can show that in fact C = 1 works.

Proof. Let $W = \{z \in \mathbb{A}_K : ||z||_v \le 1 \text{ for all } v \in M_K\}$ as in the proof of Theorem 22.12. Then W contains a complete set of coset representatives for $K \subseteq \mathbb{A}_K$, so $\mathbb{A}_K = K + W$. For any nonzero $u \in K \subseteq \mathbb{A}_K$ we also have $\mathbb{A}_K = K + uW$: given $c \in \mathbb{A}_K$ write $u^{-1}c \in \mathbb{A}_K$ as $u^{-1}c = a + b$ with $a \in K$ and $b \in W$ and then c = ua + ub with $ua \in K$ and $ub \in uW$. Now choose $z \in \mathbb{A}_K$ such that

$$0 < ||z||_v \le \epsilon_v \text{ for } v \in S, \quad 0 < ||z||_v \le 1 \text{ for } v \in T, \quad ||z||_w > C \prod_{v \ne w} ||z||_v^{-1},$$

where C is the constant in Lemma 22.13 (this is clearly possible). We then have ||z|| > C, and by Lemma 22.13 there is a nonzero $u \in K \subseteq \mathbb{A}_K$ with $||u||_v \leq ||z||_v$ for all $v \in M_K$.

Now consider the adele $a=(a_v)\in \mathbb{A}_K$ with $a_v=0$ for $v\notin S$ (for $v\in S$ the value of a_v is given by the hypothesis of the theorem). We have $\mathbb{A}_K=K+uW$, so a=x+y for some $x\in K$ and $y\in uW$. Therefore

$$||x - a_v|| = ||y||_v \le ||u||_v \le ||z||_v \le \begin{cases} \epsilon_v & \text{for } v \in S, \\ 1 & \text{for } v \in T, \end{cases}$$

as desired. \Box

Remark 22.15. Theorem 22.14 can be generalized to algebraic groups (the global field K can be viewed as the algebraic group $GL_1(K)$, an affine line); see [1] for a survey.

Corollary 22.16. Let K be a global field and let w be any place of K. Then K is dense in the restricted product $\prod_{v\neq w}(K_v, \mathcal{O}_v)$.

References

[1] Andrei S. Rapinchuk, *Strong approximation for algebraic groups*, Thin groups and superstrong approximation, MSRI Publications **61**, 2013.

MIT OpenCourseWare http://ocw.mit.edu

18.785 Number Theory I Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.