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4 Etale´ algebras, norm and trace, Dedekind extensions

4.1 Separability

We recall some standard facts about separable and inseparable field extensions and de-
fine the more general notion of an étale algebra (or separable algebra). This is optional
background material that may be skipped by those already familiar with it.

Definition 4.1. A nonzero polynomial f over a field K is separable if the zeros of f are
distinct in every extension of K; equivalently, gcd(f, f ′) = 1.1

Warning 4.2. Older texts (such as Bourbaki) define a polynomial in K[x] to be separable
if all of its irreducible factors are separable (under our definition); so (x− 1)2 is separable
under this definition but not under ours. The older definition has the disadvantage that it
is not preserved under field extension (for example, a polynomial that is inseparable as an
element of K[x] becomes separable when viewed as an element of K[x], since it splits into
linear factors in K[x] and every linear polynomial is separable). This discrepancy does not
impact the definition of separable element or field extensions.

Definition 4.3. Let L/K be an algebraic field extension. An element α ∈ L is separable
over K if it is the root of a separable polynomial in K[x] (in which case its minimal
polynomial is separable). The extension L/K is separable if every α ∈ L is separable
over K; otherwise it is inseparable.

Lemma 4.4. Let K be a field. If f ∈ K[x] is irreducible but not separable then f ′ = 0.

Proof. Let f ∈ K[x] be irreducible, and let L be its splitting field over K. If f is not
separable then f and f ′ have a common root α ∈ L. The minimal polynomial g ∈ K[x]
of α over K divides f , but f is irreducible and nonzero, so deg g = deg f . But g also must
divide f ′, and deg f ′ < deg f , so f ′ = 0.

Corollary 4.5. Let p be the characteristic of the field K and let f ∈ K[x] be irreducible.
If p = 0 then f is separable, and if p > 0 then f is not separable if and only if it is of the
form f = g(xp), where the polynomial g ∈ K[x] is uniquely determined by f .

Proof. Easy exercise.

Corollary 4.6. If char K = 0 then every algebraic extension of K is separable.

Corollary 4.7. Let K be a field of characteristic p ≥ 0. Every irreducible f ∈ K[x] is of
n

the form g(xp ) for some irreducible separable polynomial g ∈ K[x] and integer n ≥ 0 that
are uniquely determined by f .

Proof. We proceed by induction on deg f . If f is separable the corollary holds with g = f
and n = 0. Otherwise p > 0 and f = g(xp) for some unique irreducible g ∈ K[x] with

n
deg g < deg f . By induction on n = deg f , we have g = h(xp ) for some unique irreducible

n+1
separable polynomial h ∈ K[x] and integer n ≥ 0 and then f = h(xp ).

1Here f ′ denotes the formal derivative of f in K[x] and the gcd is defined only up to a unit.
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Lemma 4.8. Let L = K(α) be an algebraic extension contained in an algebraic closure K
of K and let f ∈ K[x] be the minimal polynomial of α over K. Then

# HomK(L,K) = #{β ∈ K : f(β) = 0} ≤ [L : K],

with equality if and only if α is separable over K.

Proof. Each element of HomK(L,K) is uniquely determined by the image of α, which must
be a root β of f(x) in K. The number of these roots is equal to [L : K] = deg f precisely
when f and therefore α is separable over K.

Definition 4.9. Let L/K be a finite extension. The separable degree of L/K is

[L : K]s := # HomK(L,K).

The inseparable degree of f is

[L : K]i := [L : K]/[L : K]s

We will shortly show that [L : K]i is always a positive integer (in fact a power of the
characteristic of K), but it follows immediately from the definition that

[L : K] = [L : K]s[L : K]i.

Remark 4.10. As with the degree of a field extension (defined as the dimension of a
vector space), one can define the separable degree of an arbitrary algebraic extension as
the cardinality of the set HomK(L,K). Multiplication of degrees is then multiplication of
cardinals (if S and T are sets the product of their cardinalities is the cardinality of the set
Hom(S, T ) = {f : S → T}).

Lemma 4.8 implies that for simple algebraic extensions L = K(α) we always have
[L : K]s ≤ [L : K], with equality if and only if α is separable (which we will shortly show is
equivalent to L/K being separable).

Theorem 4.11. Let φK : K → Ω be a homomorphism from a field K to an algebraically
closed field Ω, and let L/K be algebraic. Then φK extends to a homomorphism φL : L→ Ω.

Proof. We use Zorn’s lemma. Define a partial ordering on the set F of pairs (F, φF ) for
which F/K is a subextension of L/K and φF : F → Ω extends φK by defining

(F1, φF1) ≤ (F2, φF2)

whenever⋃F2 contains F1 and φF2 extends φF1 . Given any totally ordered subset C of F ,
let E = {F : (F, φF ) ∈ C} and define φE : E → Ω by φE(x) = φF (x) for x ∈ F ⊆ E
(this does not depend on the choice of F because C is totally ordered). Then (E, φE) is a
maximal element of C, and by Zorn’s lemma, F contains a maximal element (M,φM ).

We claim that M = L. If not, then pick α ∈ L−M and consider the field F = M [α] ⊆ L
properly containingM , and extend φM to ϕF : F → Ω be letting φF (α) by any root of αM (f)
in Ω, where f ∈M [x] is the minimal polynomial of α over M and αM (f) is the image of f
in Ω[x] obtained by applying ϕM to each coefficient. Then (M,φM ) is strictly dominated
by (F, φF ), contradicting its maximality.
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Lemma 4.12. Let L/F/K be a tower of finite extensions. Then

# HomK(L,K) = # HomK(F,K)# HomF (L,K).

Proof. We decompose L/F/K into a tower of simple extensions and proceed by induction.
The result is trival if L = K and otherwise it suffices to consider K ⊆ F ⊆ F (α) = L,
where K = F in the base case. Theorem 4.11 allows us to define a bijection

HomK(F,K)×HomF (F (α),K)→ HomK(F (α),K)

that sends (φ1, φ2) to φ : L → K defined by φ|F = φ1 and φ(α) = (φ̂1φ̂2φ̂
−1
1 )(α), where

φ̂1, φ̂2 ∈ Aut(K) denote arbitrary extensions of φ1, φ2 to K; note that φ(α) does not depend
on these choices and is a root of φ(f), where f ∈ F [x] is the minimal polynomial of α and

ˆ ˆˆφ(f) is its image in φ(F )[x]. The inverse bijection is φ1 = φF and φ2(α) = (φ 1
1
− φφ1)(α).

Corollary 4.13. Let L/F/K be a tower of finite extensions. Then

[L : K]s = [L : F ]s[F : K]s

[L : K]i = [L : F ]i[F : K]i

Proof. The first equality follows from the lemma and the second follows from the identities
[L : K] = [L : F ][F : K] and [L : K] = [L : K]s[L : K]i.

Corollary 4.14. Let L = K(α) be an algebraic extension. Then L/K is separable if and
only if α is separable over K, equivalently, if and only if [L : K]s = [L : K].

Proof. If L/K is separable then α is separable over K and [L : K]s = [L : K], by Lemma 4.8.
Now suppose α is separable; then [L : K]s = [L : K], by Lemma 4.8. For any β ∈ L

we can write L = K(β)(α), and note that α is separable over K(β), since its minimal
polynomial over K(β) divides it minimal polynomial over K, which is separable. So we also
have [L : K(β)]s = [L : K(β)]. The equalities

[L : K] = [L : K(β)][K(β) : K]

[L : K]s = [L : K(β)]s[K(β) : K]s

then imply [K(β) : K]s = [K(β) : K], so β is separable over K, by Lemma 4.8.

Corollary 4.15. Let L/K be a finite extension. Then [L : K]s ≤ [L : K] with equality if
and only if L/K is separable.

Proof. We have alredy established this for simple extensions, and otherwise we my decom-
pose L/K into a finite tower of simple extensions and proceed by induction on the number
of extensions, using the previous two corollaries at each step.

Corollary 4.16. If L/F/K is a tower of finite extensions with L/F and F/K separable
then L/K is separable.

Proof. This follows from Corollaries 4.13 and 4.15.

Corollary 4.17. If L/F/K is a tower of algebraic extensions with L/F and F/K separable,
then L/K is separable.
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Proof. Let β ∈ L. If β ∈ F the β is separable over K, since F/K is separable. Otherwise,
β is separable over F and we may consider the subextension M/K of F/K generated by
the coefficients of the minimal polynomial f ∈ F [x] of β over F . This is a finite separable
extension of K, and M(β) is also a finite separable extension of M , since the minimal
polynomial of β over M(β) is f , which is separable. By the previous corollary, M(β), and
therefore β, is separable over K.

Corollary 4.18. Let L/K be an algebraic extension, and let

F = {α ∈ L : α is separable over K}.

Then F is a separable field extension of K.

Proof. This is clearly a field, since if α and β are both separable over K then K(α) and
K(α, β) are separable extensions of K (by the previous corollary), thus every element of
K(α, β), including αβ and α + β, is separable over K and lies in F . The field F is then
separable by construction.

The field F in the corollary is the maximal separable extension of K in L. When L = K
it is called a separable closure of K and denoted Ksep. If K has characteristic zero then
Ksep = K is algebraically closed. This also holds when K is a perfect field.

Definition 4.19. A field K is perfect if every algebraic extension of K is separable.

All fields of characteristic zero are perfect, as are all finite fields.

Theorem 4.20. Every finite field is a perfect field.

Proof. It suffices to consider a finite field of prime order Fp, since every finite field is an
algebraic extension of its prime field, and any algebraic extension of a perfect field is perfect.

n
Let f ∈ Fp[x] be irreducible, and use Corollary 4.7 to write f(x) = g(xp ) with g ∈ Fp[x]
irreducible and separable, and n ≥ 0. If n > 0 then

1
f(x) = g( pn n−

x ) = g(xp )p,

since h(xp) = h(x)p for any h ∈ Fp[x], but this contradicts the irreducibility of f . So n = 0
and f = g is separable.

Definition 4.21. A field K is separably closed if K has no nontrivial finite separable
extensions. Equivalently, K is equal to its separable closure in any algebraic closure.

Definition 4.22. An algebraic extension L/K is purely inseparable if [L : K]s = 1.

Remark 4.23. The trivial extension K/K is both separable and purely inseparable.

Example 4.24. If K = Fp(t) and L = Fp(t1/p) then L/K is a purely inseparable extension
of degree p.

Proposition 4.25. Let K be a field of characteristic p > 0. If L/K is purely inseparable
of degree p then L = K(a1/p) for some a ∈ K\Kp; equivalently, L ' K[x]/(xp − a).

Proof. Every α ∈ L\K is inseparable over K, and by Corollary 4.5 its minimal polynomial
over K is of the form f(x) = g(xp) with f monic. We have 1 < deg f ≤ [L : K] = p, so
g(x) must be a monic polynomial of degree 1, which we can write as g(x) = x − a. Then
f(x) = xp − a, and we must have a 6∈ Kp since f is irreducible. We have [L : K(α)] = 1, so
L = K(α) ' K[x]/(xp − a) as claimed.
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Theorem 4.26. Let L/K be an algebraic extension and let F be the maximal separable
extension of K in L. Then L/F is purely inseparable.

Proof. If L = F the theorem holds, so we assume otherwise and let p > 0 be the charac-
teristic of K. Fix an algebraic closure K of K that contains L. Let α be an element of L
that is not in F and let f be its minimal polynomial over F . Use Corollary 4.7 to write

n
f(x) = g(xp ) with g ∈ F [x] irreducible and separable, and n ≥ 0. We must have deg g = 1,
since otherwise the roots of g would be separable over F and therefore over K but not in
F . Thus f(x) = xp

n − c for some c ∈ F (since f is monic and deg g = 1). Since we are in
characteristic p > 0, we can factor f in F (α)[x] as

pn − pn n
f(x) = x α = (x− α)p .

There is thus only one F -homomorphism from F (α) to K. The same statement applies to
any extension of F obtained by adjoining any set of elements of L (even an infinite set).
Therefore # HomF (L,K) = 1, so [L : F ]s = 1 and L/F is purely inseparable.

Corollary 4.27. Every algebraic extension L/K can be decomposed into a tower of exten-
sions L/F/K with F/K separable and L/F purely inseparable.

Corollary 4.28. The inseparable degree of any finite extension is a power of the charac-
teristic.

Proof. This follows from the proof of the theorem above.

4.2 Etale´ algebras

Definition 4.29. An étale K-algebra is a (necessarily commutative) K-algebra that is
isomorphic to a finite product of separable extensions of K. A finite étale K-algebra is a
K-algebra that is isomorphic to a finite product of finite separable extensions of K. By the
dimension of an étale K-algebra we mean its dimension as a K-vector space.

Every separable field extension L/K is an étale K-algebra, and if an étale K-algebra L
is a field, then it is necessarily isomorphic to a separable extension of K. An étale K-
algebra L need not be a field, but every α ∈ L is separable (note that when L is not a field
the minimal polynomial of α need not be irreducible, but it will be separable).

Example 4.30. If K is a separably closed field then every étale K-algebra of dimension n
is isomorphic to Kn = K × · · · ×K.

Our main interest in étale algebras is that they naturally arise via base change, a notion
we now recall (this is not the most general definition but suffices for our purposes).

Definition 4.31. Let ϕ : A → B be a ring homomorphism (so B is an A-module), and
let M be an A-module. The tensor product of A-modules M ⊗A B is a B-module (with
multiplication defined by b(m ⊗ b′) := m ⊗ bb′) called the base change (or extension of
scalars) of M from A to B. If M is an A-algebra then its base change to B is a B-algebra.

Remark 4.32. Each ϕ : A → B determines a functor from the category of A-modules to
the category of B-modules via base change. It has an adjoint functor called restriction of
scalars which, given a B-module M turns it into an A-module by the rule am = ϕ(a)m.
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The ring homomorphism ϕ : A → B will often be an inclusion, in which case we have
a ring extension B/A (we may also take this view in whenever ϕ is injective, which is
necessarily the case if A is a field). We are specifically interested in the case where B/A is a
field extension M is a finite étale A-algebra. We first recall the primitive element theorem.

Theorem 4.33. Let L/K be a finite separable extension. Then L = K(α) for some α ∈ L;
equivalently L ' K(x)/(f) for some monic, irreducible, separable f ∈ K[x].

Proof. See [1, §15.8] or [4, §V.7.4].

Proposition 4.34. Suppose L is a finite étale K-algebra and K ′/K is any field extension.
Then L⊗K K ′ is a finite étale K ′-algebra of the same dimension as L.

Proof. Without loss of generality we assume that L is actually a field; if not apply the
following argument to each factor of L.

By the primitive element theorem, L ' K[x]/(f) for some irreducible separable polyno-
mial f ∈ K[x]. Suppose f = f1f2 · · · fm is the irreducible factorization of f in K ′[x]. Each
fi is necessarily separable (no repeated roots over any extension), since f is. We have an
isomorphism∏of K ′-algebras L⊗KK ′ ' K ′[x]/(f), and by the Chinese Remainder Theorem,
K ′[x]/(f) ' iK

′[x]/(fi). Each field K ′[x]/(fi) is a finite separable extension of K ′, thus
L ⊗K K ′ is a finite étale algebra over K ′. We have dimL = deg f = dimK ′[x]/(f), so the
dimension is clearly preserved.

Example 4.35. Any finite dimensional real vector space V is a finite étale R-algebra (with
coordinate-wise multiplication with respect to some basis); the complex vector space V ⊗RC
is then a finite étale C-algebra of the same dimension.

Note that even when an étale K-algebra L is a field, the base change L⊗KK ′ will often
not be a field. For example, if K = Q and L 6= Q is a number field, then the base L⊗K C
will never be a field, it will be isomorphic to a C-vector space of dimension [L : K] > 1.

We record the following corollary of Proposition 4.34, which is implied by its proof.

Corollary 4.36. Let L ' K[x]/(f) be a finite separable extension of a field K defined by
an irreducible separable polynomial f ∈ K[x]. Let K ′/K be any field extension, and let
f = f1 · · · fm be the factorization of f into distinct irreducible polynomials fi ∈ K ′[x]. We
have an isomorphism of étale K ′-algebras

L⊗K K ′ '
∏

K ′[x]/(fi)
i

where each K ′[x]/(fi) is a finite separable field extension of K ′.

Proposition 4.37. Suppose L is a finite étale K-algebra and Ω is a separably closed field
extension of K.Then

L⊗K Ω '
σ∈Hom

∏
Ω.

K(L,Ω)

In particular, the map L⊗K Ω→
∏

Ω sends y ⊗ 1 to (σ(y))σ for each y ∈ L.

Proof. Without loss of generality we may assume L = K[x]/(f) is a simple field extension.
Then f factors as f(x) = (x − α1) · · · (x − αn) over Ω, with the αi are distinct. We have
a bijection between HomK(K[x]/(f),Ω) and the set {αi}: each σ ∈ HomK(K[x]/(f),Ω)
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is determined by σ(x) ∈ {α}, and for each αi, the map x 7→ αi determines a K-algebra
homomorphism σi ∈ HomK(K[x]/(f),Ω). As in the proof of Proposition 4.34 we have
Ω-algebra homomorphisms

K[x]

(f)
⊗K Ω ' Ω[x]

(f)
'
∏
αi

Ω[x]
.

( )
' Ω

x− i
αi

∏
σi

given by the maps
x⊗ 1 7→ x 7→ (αi)i 7→ (σi(x))i.

The element x ⊗ 1 generates L ⊗K Ω as an Ω-algebra, and has image (σi(x))i in
∏
σ . It
i

follows that y ⊗ 1 7→ (σi(y))i for every y ∈ L.

Remark 4.38. The proof of Proposition 4.37 does not actually require Ω to be separably
closed, we only needed f(x) to split into linear factors in Ω[x]. Thus the proposition
holds whenever all the irreducible polynomials f ∈ K[x] for which the field K[x]/(f) is
a isomorphic to one of the finite separable field extensions of K whose product is L split
completely in Ω[x] (for example, when L is a field, one could take Ω to be its normal closure).

Example 4.39. Let L/K = Q(i)/Q and Ω = C. We have Q(i) ' Q[x]/(x2 + 1) and

Q[x]
Q(i)⊗Q C '

x2 + 1
⊗Q C ' C[x]

x2 + 1
' C[x]

x− i
× C[x]

x
' C .

+ i
× C

As C-algebra isomorphisms, the corresponding maps are determined by

i⊗ 1 7→ x⊗ 1 7→ x 7→ (x, x) ≡ (i,−i) 7→ (i,−i).

Taking the base change of Q(i) to C lets us see the two distinct embeddings of Q(i) in C,
which are determined by the image of i. Note that (i⊗1)2 = i2⊗12 = −1⊗1 = −(1⊗1) and
(i,−i)2 = (−1,−1) = −(1, 1), so we also have 1⊗ 1 7→ (1, 1). Thus as an isomorphism of C-
vector spaces, the C-basis (1⊗1, 1⊗i) for Q(i)⊗QC is mapped to the C-basis (1, 1), (i,−i)
for C× C. It follows that for any (α, β) ∈ C× C, the inverse image of

( )
α+ β

(α, β) =
2

(1, 1) +
α− β

(i,
2i

−i)

in Q(i)⊗ C under this isomorphism is

α+ β

2
(1⊗ 1) +

α− β
2i

(i⊗ 1) = 1⊗ α+ β

2
+ i⊗ α− β

.
2i

Now R/Q is an extension of rings, so we can also consider the base change of the Q-algebra
Q(i) to R. But note that R is not separably closed and in particular, it does not contain a
subfield isomorphic to Q(i), thus Proposition 4.37 does not apply. Indeed, as an R-module,
we have Q(i)⊗Q R ' R2, but as an R-algebra, Q(i)⊗Q R ' C 6' R2.

4.3 Norms and traces

We now introduce the norm and trace of a finite extension B/A. These are often defined only
for field extensions, but in fact the same definition works without modification whenever B
is a free A-module of finite rank. One can generalize further to projective modules (with
some restrictions), but this is somewhat more involved and not needed here.
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Definition 4.40. Let B/A be ring extensions in which B is a free A-module of finite rank.
The (relative) norm NB/A(b) and trace TB/A(b) of b (down to A) are the determinant and
trace of the A-linear multiplication-by-b map B → B defined by x 7→ bx.

As a special case, note that if B/A is a finite extension of fields, then B is an A-vector
space of finite dimension, hence a free A-module of finite rank. In practice one computes the
norm and trace by picking a basis for B as an A-module and computing the matrix of the
multiplication-by-b map with respect to this basis; this is an n×n matrix with entries in A
whose determinant and trace do not depend on the choice of basis. It follows immediately
from the definition that NB/A is multiplicative and TB/A is additive. Moreover, the norm
map NB/A defines a group homomorphism from B× to A× and the trace map TB/A defines
a group homomorphism from B to A (as additive groups).

Example 4.41. Consider A = R and B = C, which has the A-module basis {1, i}. For

b = 2 + 3i the matrix of B →×b B with respect to this basis can be written as

3

(
2 −3
3 2

)
, thus

2
NC/ (2 + 3i) = detR

(
−

3 2

)
= 13,

2 3
T (2 + 3i) = tr = 4.C/R

(
−

3 2

)

Warning 4.42. Note that in order to write down the matrix of an A-linear transformation
B → B with respect to basis for B as a free A-module of rank n, one not only needs to pick
a basis, one needs to order this basis and decide whether to represent elements of B ' An

as row vectors with linear transformations acting via matrix multiplication on the right,
or as column vectors with linear transformations acting via matrix multiplication on the
left. The latter convention is often implicitly assumed in the literature (as in the example
above), but the former is often used in computer algebra systems.

We now verify that the norm and trace are well behaved under base change.

Lemma 4.43. Let B/A be ring extension with B free of rank n over A, and let ϕ : A→ A′

be a ring homomorphism. The base change B′ = B ⊗A A′ of B to A′ is a free A′-module of
rank n and we for every b ∈ B

ϕ(NB/A(b)) = NB (b 1) and ϕ(T (b) = T (b 1).′/A′ ⊗ B/A B′/A′ ⊗

Proof. Let b ∈ B, let (b1, . . . , bn) be a basis forB as anA-module, and letM = (m ) ∈ An×nij
b

be the matrix of B →× B with respect to this basis. Then (b1 ⊗ 1, . . . , bn ⊗ 1) is a basis for
B′ as an A′-module (thus B′ is free of rank n over A′) and M ′ = (ϕ(mij)) ∈ A′n×n is the

b 1
matrix of B′

×→⊗ B′, and we have

ϕ(NB/A(b) = ϕ(detM) = det(M ′)) = NB′/A (b′ ⊗ 1)

ϕ(TB/A(b) = ϕ(TM) = ϕ(T(M ′)) = NB′/A (b′ ⊗ 1)

Theorem 4.44. Let K be a field with separable closure Ω and let L be a finite étale K-
algebra. Then for all α ∈ L we have

NL/K(α) =

σ∈

∏
σ(α) and TL/K(α) =

HomK(L,Ω) σ∈Hom

∑
σ(α).

K(L,Ω)
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Proof. Let n be the rank of L as a K-module. By the previous lemma and Proposition 4.37.

n

NL/K(α) = NL KΩ/Ω(α⊗ 1) = NΩn/Ω((σ1(α), . . . , σn(α)) =⊗
∏

σi(α).
i=1

The isomorphism L ⊗K Ω →
∏
σ Ω = Ωn of Prop. 4.37 sends α ⊗ 1 to (σ1(α), . . . , σn(α)).

Using the standard basis for Ωn, the matrix of multiplication-by-(σ1(α), . . . , σn(α)) is just
the diagonal matrix with σi(α) in the ith diagonal entry. Similarly,

n

TL/K(α) = TL KΩ/Ω(α⊗ 1) = TΩn/Ω((σ σ .⊗ 1(α), . . . , σn(α)) =
∑

i(α)
i=1

The proof above demonstrates a useful trick: when working over a field that is not
algebraically/separably closed, base change to an algebraic/separable closure. This often
turns separable field extensions into étale algebras that are no longer fields.

Proposition 4.45. Let L/K be a finite extension. Let α ∈ L×, let f ∈ K[x] be its minimal
polynomial over K, let α1, . . . , αd be the roots of f(x) in an algebraic closure of K that
contains L, and let e = [L : K(α)]. Then

d

NL/K(α) =
∏ d

αei and TL/K(α) = e
i=1

∑
αi,

i=1

dIn particular, if f(x) =
∑

i=0 aix
i, then NL/K(α) = ae0 and TL/K(α) = −ead−1.

Proof. This follows immediately from Theorem 4.44 when L/K is separable, but to prove
the general case, let Mα be the matrix of the multiplication-by-α map Tα : L→ L. It follows
from the Cayley-Hamilton theorem that Tα satisfies the characteristic polynomial g ∈ K[x]
of Mα, thus α is a root of g, which must be a multiple of f . If we pick a K-basis u1, . . . , ud
for K(α)/K and a K(α)-basis v1, . . . , ve for L/K(α), then (uivj)ij is a K-basis for L/K,
and if we order this basis appropriately, the matrix Mα is block diagonal with e copies of
the d × d matrix of the restriction of Tα to K(α) along the diagonal and zeros elsewhere.
The characteristic polynomial of the restriction of Tα to K(α) is necessarily f(x), and the
characteristic polynomial of Tα is then g(x) = f(x)e. The proposition follows.

Corollary 4.46. Let M/L/K be a tower of finite extensions. Then

NM/K = NL/K ◦NM/L and TM/K = TL/K ◦ TM/L.

Proof. Fix a separable closure Ω of K that contains M . As in the proof of Lemma 4.12,
each σ ∈ HomK(M,Ω) can be identified with a pair (σ1, σ2) with σ1 ∈ HomL(M,Ω) and
σ2 ∈ HomK(L,Ω). We then note that for any α ∈M×,

NM/K(α) = σ(α) = σ2 σ1(α)

σ Hom (M,Ω) σ Hom (L,Ω)


σ Hom (M,Ω)


=

∈

∏
K

∏
,

2∈ K 1∈

∏
NL/K(NM/L(α))

L

and T (

 
M/K α) = TL/K(TM/L(α)) follows similarly by replacing products with sums.

Corollary 4.46 actually holds in greater generality.
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Theorem 4.47 (Transitivity of Norm and Trace). Let A ⊆ B ⊆ C be rings with C
free of finite rank over B and B free of rank over A. Then C is free of finite rank over A
and

NC/A = NB/A ◦NC/B and TC/A = TB/A ◦ TC/B.

Proof. See [3, §III.9.4].

4.4 Bilinear pairings and discriminants

Definition 4.48. Let V be a finite dimensional K-vector space. A bilinear pairing on V
is a map 〈·, ·〉 : V × V → K that satisfies

〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉,
〈u, v + w〉 = 〈u, v〉+ 〈u,w〉,
〈λu, v〉 = 〈u, λv〉 = λ〈u, v〉.

If 〈v, w〉 = 〈w, v〉 then 〈·, ·〉 is symmetric, and if 〈v, w〉 = −〈w, v〉 then 〈·, ·〉 is skew-
symmetric.

Definition 4.49. Let e := (e1, . . . , en) be a basis for a vector space V . The discriminant
of a bilinear pairing 〈·, ·〉 on V with respect to the basis e is

disc(〈·, ·〉; e) := det ((〈ei, ej〉)ij) .

If T : V → V is an invertible linear transformation (change of basis) then

disc(〈·, ·〉;Te) = (detT )2 disc(〈·, ·〉; e),

thus disc(〈·, ·〉; e) depends on the choice e. But note that whether disc(〈·, ·〉; e) is zero or
not does not depend on e.

Any bilinear pairing induces a map V → V ∗ := HomK(V,K) that sends each v ∈ V to
the linear functional w 7→ 〈v, w〉 in V ∗; this map need not be an isomorphism, but we are
particularly interested in the case where it is.

Definition 4.50. The left kernel of a bilinear pairing 〈·, ·〉 is the vector space

{v ∈ V : 〈v, w〉 = 0, ∀w ∈ V },

and the right kernel is similarly defined by {w ∈ V : 〈v, w〉 = 0, ∀v ∈ V }. If 〈·, ·〉 is
symmetric then its left and right kernels coincide.

Proposition 4.51. Let 〈·, ·〉 be a bilinear pairing on a finite dimensional vector space V .
The following are equivalent:

(1) the map V → V ∗ induced by 〈·, ·〉 is an isomorphism;

(2) the left kernel of 〈·, ·〉 is {0};
(3) the discriminant of 〈·, ·〉 is nonzero.

Proof. This is just linear algebra, the equivalences (1)⇔ (2)⇔ (3) are all immediate.

Definition 4.52. A bilinear pairing with any of the three equivalent properties of Propo-
sition 4.51 is said to be nondegenerate or perfect.
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Remark 4.53. One can define bilinear pairings more generally for the case where K is
a ring and V is a free K-module of finite rank. In this more general setting the three
properties of Proposition 4.51 are not necessarily equivalent; one calls pairings that satisfy
(1) perfect and those that satisfy (2) and (3) non-degenerate.

Recall from linear algebra that each basis (ei) for V uniquely determines a dual basis
(fi) for V ∗ that satisfies {

1 if i = j,
fj(ei) = δij :=

0 if i 6= j.

Here δij is the Kronecker delta function and the linear functional fj : V → K is uniquely
determined by its action on the basis (ei) for V , which is given above.

If 〈·, ·〉 is nondegenerate then applying the inverse of the isomorphism V → V ∗ it induces
to the basis (fi) uniquely determines a basis (e′i) for V that satisfies

〈e′i, ej〉 = δij ,

since the inverse image e′i of fi under the induced map V → V ∗ satisfies fi(ej) = 〈e′i, ej〉.
We record this fact in the following proposition.

Proposition 4.54. Let K be a field and let V a K-vector space of dimension n with a
nondegenerate pairing 〈·, ·〉. Associated to each basis e1, . . . , en for V there is a unique basis
e′1, . . . , e

′
n for V such that 〈e′i, ej〉 = δij.

4.5 Extensions of Dedekind domains

We now want to prove that the ring of integers of a number field is a Dedekind domain.
We will use following setup: let A be a Dedekind domain with fraction field K, let L/K
be a finite extension, and let B be the integral closure of A in L. To avoid trivialities, we
will assume that A is not a field (this would mean A = K and L = B), so A is a Dedekind
domain of dimension one. Note that B ∩K = A, since A is integrally closed. We now show
that L = FracB.

Proposition 4.55. Let A be a Dedekind domain with fraction field K, let L/K be a finite
extension, and let B be the integral closure of A in L. Every element of L can be written
as b with a ∈ A and b ∈ B. In particular, the K-vector space K ·B spanned by B is equala
to L and L is the fraction field of B.

Proof. Let α ∈ L. The minimal polynomial of α over K is a monic irreducible polynomial
in K[x], and since K = FracA, we can multiply it by a nonzero element of A so that α is a
root of the irreducible polynomial

f(x) = anx
n + a 1

n 1x
n− + x− · · ·+ a1 + a0,

with an 6= 0. We can make this polynomial monic by replacing x with x/an and multiplying
by an 1

n
− to obtain

an−1
n f(x/an) = xn + a n 1 n 2 n

n 1x
− + anan 2x

− · · ·+ an
−2a x 1

− 1 + an−− n a0.

This is a monic polynomial with coefficients in A, so its roots, including anα, all lie in B,
the integral closure of A in L; thus α = b/an for some b ∈ B.

It follows that K · B = L, and that L lies in the fraction field of B. We now note that
since B ⊆ L ⊆ FracB and L is a field, we must have L = FracB.
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Proposition 4.56. Let A be a Dedekind domain with fraction field K, let L/K be a finite
extension, and let B be the integral closure of A in L. Then NL/K(b) ∈ A and TL/K(b) ∈ A
for all b ∈ B. ∑dProof. The minimal polynomial f = i=0 aix

i ∈ K[x] of b has coefficients in A, by
Proposition 2.1, and it then follows from Proposition 4.45 that NL/K(b) = ae0 ∈ A and
TL/K(b) = −ead−1 ∈ A (where e = [L : K(b)] ∈ Z).

Definition 4.57. Let L/K be a finite extension of fields. The trace pairing is the map
L× L→ K defined by

〈x, y〉L/K := TL/K(xy).

Proposition 4.58. Let L/K be a finite extension of fields. The trace pairing 〈·, ·〉L/K is a
nondegenerate symmetric bilinear pairing.

Proof. Bilinearity follows from the K-linearity of the trace map TL/K , and symmetry is
immediate. Since L/K is separable, TL/K is not the zero map (as proved on Problem
Set 2) and we may pick z ∈ L for which TL/K(z) 6= 0. Then for every x ∈ L× we have
〈x, z/x〉L/K = TL/K(z) 6= 0, which means that the left kernel of 〈·, ·〉L/K is trivial, hence it
is nondegenerate.

We now assume that L/K is separable. For the next several lectures we will be working
in the following setting: A is a Dedekind domain with fraction field K, the extension L/K
is finite separable, and B is the integral closure of A in L (which we will shortly prove is
also a Dedekind domain). As a convenient shorthand, we will write ”assume AKLB” to
indicate that we are using this setup.

Definition 4.59. Assume AKLB and let M ⊆ L be an A-module. The dual A-module is

M∗ := {x ∈ L : TL/K(xm) ∈ A ∀m ∈M}.

Proposition 4.60. Assume AKLB. Then B is a finitely generated A-module.

Proof. By Proposition 4.55, B spans L as a K-vector space, so it contains a basis (e1, . . . , en)
for L as a K-vector space. Let M ⊆ B be the A-span of (e1, . . . , en). Then M is an A-
submodule of L that lies in the A-submodule B of L. We have B ⊆ B∗, by Proposition 4.56
and the definition of B∗, and M ⊆ B implies B∗ ⊆M∗. We thus have inclusions

M ⊆ B ⊆ B∗ ⊆M∗.

The A-module M is generated by (e1, . . . , en), and its dual M∗ is generated by the unique
K-basis (e′1, . . . , e

′
n) for L satisfying 〈e′i, ej〉L/K = δij , by Proposition 4.54. Note that

TL/K(e′iej) = 〈e′i, ej〉L/K = δij ∈ {0, 1} ⊆ A,

so the e′i all lie in M∗. Since A is noetherian, and M∗ is finitely generated, every A-
submodule of M∗ is finitely generated, including B (and B∗).

Remark 4.61. The theorem above is not true when L/K is not required to be separable,
not even when A is a PID; see [2, Ex. 11, p. 205]. We used the separability hypothesis when
we invoked Proposition 4.54, which only applies to nondegenerate pairings.
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Lemma 4.62. Let A ⊆ B be an arbitrary extension of domains with B integral over A,
and let q0 ( q1 be primes of B. Then q0 ∩A ( q1 ∩A and dimA ≥ dimB.

Proof. We first replace B with B/q0 and replace A, q0, and q1 with their images in B/q0 (the
new B is integral over the new A, since the image of a monic polynomial in A[x] is a monic
polynomial in (A/(q0 ∩ A))[x]). Then q0 = 0 and q1 is a nonzero prime ideal. Let x ∈ q1

be nonzero. Its minimal polynomial xn + a 1
n 1x

n− + +− · · · a0 = 0 has coefficients in A and
nonzero constant coefficient a0 (otherwise divide by x). We have a0 = −a1x−· · ·−xn ∈ q1,
thus 0 6= a0 ∈ q1 ∩ A. So q1 ∩ A is not the zero ideal and therefore properly contains
q0 ∩ A = {0}. We can now apply this result to any chain of distinct prime ideals in B to
get a chain of distinct prime ideals in A, thus dimA ≥ dimB.

Theorem 4.63. Assume AKLB. Then B is a Dedekind domain.

Proof. We note that:

• B is noetherian because it is finitely generated over A, which is noetherian;

• B is integrally closed in L, which is its fraction field;

• B has dimension at most 1, since dimB ≤ dimA ≤ 1.

Thus B is a Dedekind domain.

Remark 4.64. Theorem 4.63 holds without the assumption that L/K is separable. This
follows from the Krull-Akizuki Theorem, see [5, Thm. 11.7] or [4, §VII.2.5], which is used to
prove that B is noetherian (even though it need not be finitely generated as an A-module).

Corollary 4.65. The ring of integers of a number field is a Dedekind domain.
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