5 Factoring primes in Dedekind extensions

5.1 Ramification and inertia

Let us recall the " $A K L B$ setup": we are given a Dedekind domain A (assumed not a field) with fraction field K and a finite separable extension L / K, and we define B to be the integral closure of A in L. In the previous lecture we proved that B is a Dedekind domain and L with fraction field.

To simplify the language, whenever we have a Dedekind domain A, by a prime of A (or of its fraction field K), we mean a nonzero prime ideal; the prime elements of A are precisely those that generate nonzero principal prime ideals, so this generalizes the usual terminology. Note that 0 is (by definition) not prime, even though (0) is a prime ideal; when we refer to a prime of A we are specifically excluding the zero ideal, equivalently (since $\operatorname{dim} A=1$), we are restricting to maximal ideals.

If \mathfrak{p} is a prime of A, the ideal $\mathfrak{p} B$ is not necessarily a prime of B, but it can be uniquely factored in the Dedekind domain B as

$$
\mathfrak{p} B=\prod_{\mathfrak{q}} \mathfrak{q}^{e_{\mathfrak{q}}} .
$$

Our main goal for this lecture and the next is to understand the relationship between the prime \mathfrak{p} and the primes \mathfrak{q} dividing $\mathfrak{p} B$. Such prime ideals \mathfrak{q} are said to lie over or above the prime ideal \mathfrak{p}. As an abuse of notation, we will often write $\mathfrak{q} \mid \mathfrak{p}$ to indicate this relationship (there is little risk of confusion, the prime \mathfrak{p} is not divisible by any primes of A other than itself). We now note that the primes \mathfrak{q} lying above \mathfrak{p} are precisely those whose contraction to A is equal to \mathfrak{p}. This applies not only in the $A K L B$ setup, but whenever A is an integral domain of dimension one contained in a Dedekind domain B.

Lemma 5.1. Let A be a domain of dimension one contained in a Dedekind domain B. Let \mathfrak{p} be a prime of A and let \mathfrak{q} be a prime of B. Then $\mathfrak{q} \mid \mathfrak{p}$ if and only if $\mathfrak{q} \cap A=\mathfrak{p}$.

Proof. If \mathfrak{q} divides $\mathfrak{p} B$ then it contains $\mathfrak{p} B$, and then $\mathfrak{q} \cap A$ contains $\mathfrak{p} B \cap A$ which contains \mathfrak{p}; the ideal \mathfrak{p} is maximal and $\mathfrak{q} \cap A \neq A$, so $\mathfrak{q} \cap A=\mathfrak{p}$. Conversely, if $\mathfrak{q} \cap A=\mathfrak{p}$ then $\mathfrak{q}=\mathfrak{q} B$ certainly contains $(\mathfrak{q} \cap A) B=\mathfrak{p} B$, and B is a Dedekind domain, so \mathfrak{q} divides $\mathfrak{p} B$.

The primes \mathfrak{p} of A are all maximal ideals, so each has an associated residue field A / \mathfrak{p}, and similarly for primes \mathfrak{q} of B. If \mathfrak{q} lies above \mathfrak{p} then we may regard the residue field B / \mathfrak{q} as a field extension of \mathfrak{q}; indeed, the kernel of the map $A \hookrightarrow B \rightarrow B / \mathfrak{q}$ is $\mathfrak{p}=A \cap \mathfrak{q}$, and the induced map $A / \mathfrak{p} \rightarrow B / \mathfrak{q}$ is a ring homomorphism of fields, hence injective.

Definition 5.2. Assume $A K L B$, and let \mathfrak{p} be a prime of A. The exponent $e_{\mathfrak{q}}$ in the factorization $\mathfrak{p} B=\prod_{\mathfrak{q} \mid \mathfrak{p}} \mathfrak{q}^{e_{\mathfrak{q}}}$ is the ramification index of \mathfrak{q} and the degree $f_{\mathfrak{q}}=[B / \mathfrak{q}: A / \mathfrak{p}]$ is the residue degree, or local degree, of \mathfrak{q}. In situations where more than one relative extension of Dedekind domains is under consideration, we may write $e_{\mathfrak{q} / \mathfrak{p}}$ for $e_{\mathfrak{q}}$ and $f_{\mathfrak{q} / \mathfrak{p}}$ for $f_{\mathfrak{q}}$.

The residue degree $f_{\mathfrak{q}}$ is also called its inertia degree of \mathfrak{q} for reasons that will be explained in later lectures. The set of primes \mathfrak{q} lying above \mathfrak{p} is called the fiber above \mathfrak{p} which we may denote $\{\mathfrak{q} \mid \mathfrak{p}\}$; it is the fiber of the surjective map $\operatorname{Spec} B \rightarrow \operatorname{Spec} A$ defined by $\mathfrak{q} \mapsto \mathfrak{q} \cap A$.

Lemma 5.3. Let A be a Dedekind domain with fraction field K, let $M / L / K$ be a tower of finite separable extension, and let B and C be the integral closures of A in L and M
respectively. Then C is the integral closure of B in M, and if \mathfrak{r} is a prime of M lying above a prime \mathfrak{q} of L lying above a prime \mathfrak{p} of K then $e_{\mathfrak{r} / \mathfrak{p}}=e_{\mathfrak{r} / \mathfrak{q}} e_{\mathfrak{q} / \mathfrak{p}}$ and $f_{\mathfrak{r} / \mathfrak{p}}=f_{\mathfrak{r} / \mathfrak{q}} f_{\mathfrak{q} / \mathfrak{p}}$.

Proof. Easy exercise.
Example 5.4. Let $A=\mathbb{Z}$, with $K=\operatorname{Frac} A=\mathbb{Q}$, and let $L=\mathbb{Q}(i)$ with $[L: K]=2$. The prime $\mathfrak{p}=(5)$ factors in $B=\mathbb{Z}[i]$ into two distinct prime ideals:

$$
5 \mathbb{Z}[i]=(2+i)(2-i)
$$

The prime $(2+i)$ has ramification index $e_{(2+i)}=1$, and $e_{(2-i)}=1$ as well. The residue field $\mathbb{Z} /(5)$ is isomorphic to the finite field \mathbb{F}_{5}, and we also have $\mathbb{Z}[i] /(2+i) \simeq \mathbb{F}_{5}$ (as can be determined by counting the $\mathbb{Z}[i]$-lattice points in a fundamental parallelogram of the sublattice $(2+i)$ in $\mathbb{Z}[i])$, so $f_{(2+i)}=1$, and similarly, $f_{(2-i)}=1$.

By contrast, the $\mathfrak{p}=(7)$ remains prime in $B=\mathbb{Z}[i]$; its prime factorization is simply

$$
7 \mathbb{Z}[i]=(7),
$$

where now (7) denotes a principal ideal in B (this is clear from context). The ramification index of (7) is thus $e_{(7)}=1$, but its residue field degree is $f_{(7)}=2$, because $\mathbb{Z} /(7) \simeq \mathbb{F}_{7}$, but $\mathbb{Z}[i] /(7) \simeq \mathbb{F}_{49}$ has dimension 2 has an \mathbb{F}_{7}-vector space.

The prime $\mathfrak{p}=(2)$ factors as

$$
(2)=(1+i)^{2},
$$

since $(1+i)^{2}=(1+2 i-1)=(2 i)=(2)$ (note that i is a unit). You might be thinking that $(2)=(1+i)(1-i)$ factors into distinct primes, but note that $(1+i)=-i(1+i)=(1-i)$. Thus $e_{(1+i)}=2$, and $f_{(1+i)}=1$ because $\mathbb{Z} /(2) \simeq \mathbb{F}_{2} \simeq \mathbb{Z}[i] /(1+i)$.

Let us now compute the sum $\sum_{\mathfrak{q} \mid \mathfrak{p}} e_{\mathfrak{q}} f_{\mathfrak{q}}$ for each of the primes \mathfrak{p} we factored above:

$$
\begin{aligned}
& \sum_{q \mid(2)} e_{\mathfrak{q}} f_{\mathfrak{q}}=e_{(1+i)} f_{(1+i)}=2 \cdot 1=2, \\
& \sum_{q \mid(5)} e_{\mathfrak{q}} f_{\mathfrak{q}}=e_{(2+i)} f_{(2+i)}+e_{(2-i)} f_{(2-i)}=1 \cdot 1+1 \cdot 1=2, \\
& \sum_{q \mid(7)} e_{\mathfrak{q}} f_{\mathfrak{q}}=e_{(7)} f_{(7)}=2 \cdot 1=2
\end{aligned}
$$

In all three cases we obtain $2=[\mathbb{Q}(i): \mathbb{Q}]$; as we shall shortly prove, this is not an accident.
Example 5.5. Let $A=\mathbb{C}[x]$, with $K=\operatorname{Frac} A=\mathbb{C}(x)$, and let $L=\mathbb{C}(\sqrt{x})=\operatorname{Frac} B$, where $B=\mathbb{C}[x, y] /\left(y^{2}-x\right)$. Then $[L: K]=2$. The prime $\mathfrak{p}=(x-4)$ factors in B into two distinct prime ideals:

$$
(x-4)=\left(y^{2}-4\right)=(y+2)(y-2) .
$$

We thus have $e_{(y+2)}=1$, and $f_{(y+2)}=[B /(y+2): A /(x-4)]=[\mathbb{C}: \mathbb{C}]=1$. Similarly, $e_{(y-2)}=1$ and $f_{(y-2)}=1$.

The prime $\mathfrak{p}=x$ factors in B as

$$
(x)=\left(y^{2}\right)=(y)^{2},
$$

and $e_{(y)}=2$ and $f_{(y)}=1$. As in the previous example, $\sum_{\mathfrak{q} \mid \mathfrak{p}} e_{\mathfrak{q}} f_{\mathfrak{q}}=[L: K]$ in both cases:

$$
\begin{aligned}
\sum_{\mathfrak{q} \mid(x-4)} e_{\mathfrak{q}} f_{\mathfrak{q}} & =e_{(y+2)} f_{(y+2)}+e_{(y-2)} f_{(y-2)}=1 \cdot 1+1 \cdot 1=2, \\
\sum_{\mathfrak{q} \mid(x)} e_{\mathfrak{q}} f_{\mathfrak{q}} & =e_{(y)} f_{(y)}=2 \cdot 1=2
\end{aligned}
$$

Before proving that $\sum_{\mathfrak{q} \mid \mathfrak{p}} e_{\mathfrak{q}} f_{\mathfrak{q}}=[L: K]$ always holds, we note the following. While the ring $B / \mathfrak{p} B$ is in general not a field extension of A / \mathfrak{p} (because it is not necessarily a field), it is always an (A / \mathfrak{p})-algebra, and in particular, an (A / \mathfrak{p})-vector space.
Lemma 5.6. Assume $A K L B$ and let \mathfrak{p} be a prime of A. The dimension of $B / \mathfrak{p} B$ as an A / \mathfrak{p}-vector space is equal to the dimension of L as a K-vector space, that is

$$
[B / \mathfrak{p} B: A / \mathfrak{p}]=[L: K]
$$

Proof. Let $S=A-\mathfrak{p}$, let $A^{\prime}=S^{-1} A=A_{\mathfrak{p}}$ and let $B^{\prime}=S^{-1} B$ (note that S is closed under finite products, both as a subset of A and as a subset of B, so this makes sense). Then

$$
A^{\prime} / \mathfrak{p} A^{\prime}=\left(S^{-1} A\right) /\left(\mathfrak{p} S^{-1} A\right)=A_{\mathfrak{p}} /\left(\mathfrak{p} A_{\mathfrak{p}}\right) \simeq A / \mathfrak{p}
$$

and

$$
B^{\prime} / \mathfrak{p} B^{\prime}=S^{-1} B / \mathfrak{p} S^{-1} B \simeq B / \mathfrak{p} B
$$

Thus if the lemma holds when $A=A_{\mathfrak{p}}$ is a DVR then it also holds for A, so we may assume without loss of generality that A is a DVR, and in particular, a PID. We proved in the previous lecture that B is finitely generated as an A-module (see Proposition 4.60), and it is certainly torsion free as an A-module, since it is a domain and contains A. It follows from the structure theorem for modules over PIDs that B is free of finite rank over A, and B spans L as a K-vector space (see Proposition 4.55). It follows that the rank of B as an A-module (which is the same as the rank of $B / \mathfrak{p} B$ as an A / \mathfrak{p}-module), is the same as the dimension of L as a K-vector space: any basis for B as an A-module is also a basis for L as a K-vector space, and after clearing denominators if necessary, any basis for L as a K-vector space is also a basis for B as an A-module. Thus $[B / \mathfrak{p} B: A / \mathfrak{p}]=[L: K]$.

Theorem 5.7. Assume AKLB. For each prime \mathfrak{p} of A we have

$$
\sum_{\mathfrak{q} \mid \mathfrak{p}} e_{\mathfrak{q}} f_{\mathfrak{q}}=[L: K] .
$$

Proof. We have

$$
B / \mathfrak{p} B \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} B / \mathfrak{q}^{e_{\mathfrak{q}}}
$$

Applying the previous proposition gives

$$
\begin{aligned}
{[L: K] } & =[B / \mathfrak{p} B: A / \mathfrak{p}] \\
& =\sum_{\mathfrak{q} \mid \mathfrak{p}}\left[B / \mathfrak{q}^{e_{q}}: A / \mathfrak{p}\right] \\
& =\sum_{\mathfrak{q} \mid \mathfrak{p}} e_{\mathfrak{q}}[B / \mathfrak{q}: A / \mathfrak{p}] \\
& =\sum_{\mathfrak{q} \mid \mathfrak{p}} e_{\mathfrak{q}} f_{\mathfrak{q}} .
\end{aligned}
$$

The third equality uses the fact that $B / \mathfrak{q}^{e_{\mathfrak{q}}}$ has dimension $e_{\mathfrak{q}}$ as a B / \mathfrak{q}-vector space; indeed, we can take the images in $B / \mathfrak{q}^{e_{\mathfrak{q}}}$ of any $b_{i} \in B$ with $v_{\mathfrak{q}}\left(b_{i}\right)=i$ for $i=0, \ldots, e_{\mathfrak{q}}-1$ as a basis (recall that $\mathfrak{q}^{e_{\mathfrak{q}}}=\left\{b \in B: v_{\mathfrak{q}}(b) \geq e_{\mathfrak{q}}\right\}$). Indeed, if we pick a uniformizer π for $B_{\mathfrak{q}}$ that lies in B then $B / \mathfrak{q}^{e_{\mathfrak{q}}} \simeq(B / \mathfrak{q})[\bar{\pi}] \simeq(B / \mathfrak{q})[x] /\left(x^{e_{\mathfrak{q}}}\right)$, where $\bar{\pi}$ is the image of π in $B / \mathfrak{q}^{e_{\mathfrak{q}}}$.

For each prime \mathfrak{p} of A, let $g_{\mathfrak{p}}:=\{\mathfrak{q} \mid \mathfrak{p}\}$ denote the cardinality of the fiber above \mathfrak{p}.
Corollary 5.8. Assume $A K L B$ and let \mathfrak{p} be a prime of A. The integer $g_{\mathfrak{p}}$ lies between 1 and $n=[L: K]$, as do the integers $e_{\mathfrak{q}}$ and $f_{\mathfrak{q}}$ for each $\mathfrak{q} \mid \mathfrak{p}$.

We now define some standard terminology that is used in the $A K L B$ setting to describe how a prime \mathfrak{p} of K splits in L (that is, for a nonzero prime ideal \mathfrak{p} of A, how the ideal $\mathfrak{p} B$ factors into nonzero prime ideals \mathfrak{q} of B).

Definition 5.9. Assume $A K L B$, let \mathfrak{p} be a prime of A.

- L / K is totally ramified at \mathfrak{q} if $e_{\mathfrak{q}}=[L: K]$ (equivalently, $f_{\mathfrak{q}}=1=g_{\mathfrak{p}}=1$).
- L / K is unramified at \mathfrak{q} if $e_{\mathfrak{q}}=1$ and B / \mathfrak{q} is a separable extension of A / \mathfrak{p}.
- L / K is unramified above \mathfrak{p} if it is unramified at all $\mathfrak{q} \mid \mathfrak{p}$, equivalently, if $B / \mathfrak{p} B$ is a finite étale algebra over A / \mathfrak{p}.

When L / K is unramified above \mathfrak{p} we say that

- \mathfrak{p} remains inert in L if $\mathfrak{p} B$ is prime (equivalently, $e_{\mathfrak{q}}=g_{\mathfrak{p}}=1$, and $f_{\mathfrak{q}}=[L: k]$).
- \mathfrak{p} splits completely in L if $g_{\mathfrak{p}}=[L: K]$ (equivalently, $e_{\mathfrak{q}}=f_{\mathfrak{q}}=1$ for all $\mathfrak{q} \mid \mathfrak{p}$).

5.2 Extending valuations

Recall that associated to each prime \mathfrak{p} in a Dedekind domain A we have a discrete valuation $v_{\mathfrak{p}}$ on the fraction field K; it is the extension of the discrete valuation $v_{\mathfrak{p}}$ on the DVR $A_{\mathfrak{p}}$ (which also has fraction field K). In the $A K L B$ setup the primes \mathfrak{q} of B similarly give rise to discrete valuations $v_{\mathfrak{q}}$ on L, and we would like to understand the relationship between the valuation v_{p} and the valuations v_{q}.

Definition 5.10. Let L / K be a finite separable extension, and let v and w be discrete valuations on K and L respectively. If $\left.w\right|_{K}=e v$ for some $e \in \mathbb{Z}_{>0}$ then we say that w extends v with index e.

We will show that the discrete valuations of L that extend discrete valuations $v_{\mathfrak{p}}$ of K are precisely the discrete valuations $v_{\mathfrak{q}}$ for $\mathfrak{q} \mid \mathfrak{p}$, and that each such $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index $e_{\mathfrak{q}}$, where $e_{\mathfrak{q}}$ is the ramification index. This should strike you as remarkable. Valuations are in some sense a geometric notion, since they give rise to absolute values that can be used to define a distance metric, it is thus a bit surprising that they are also sensitive to the splitting of primes in extensions, which is very much an algebraic notion.

Theorem 5.11. Assume $A K L B$ and let \mathfrak{p} be a prime of A. For each prime $\mathfrak{q} \mid \mathfrak{p}$, the discrete valuation $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index $e_{\mathfrak{q}}$. Moreover, the map $\mathfrak{q} \mapsto v_{\mathfrak{q}}$ is a bijection from the set of primes $\mathfrak{q} \mid \mathfrak{p}$ to the set of discrete valuations of L that extend $v_{\mathfrak{p}}$.

Proof. Let $\mathfrak{q} \mid \mathfrak{p}$ and let $\mathfrak{p} B=\prod_{\mathfrak{r} \mid \mathfrak{p}} \mathfrak{r}^{e_{\mathfrak{r}}}$ be the prime factorization of $\mathfrak{p} B$. We have

$$
(\mathfrak{p} B)_{\mathfrak{q}}=\left(\prod_{\mathfrak{r} \mid \mathfrak{p}} \mathfrak{r}^{e_{\mathfrak{r}}}\right)_{\mathfrak{q}}=\prod_{\mathfrak{r} \mid \mathfrak{p}} \mathfrak{r}_{\mathfrak{q}}^{e_{\mathfrak{r}}}=\prod_{\mathfrak{r} \mid \mathfrak{p}}\left(\mathfrak{r} B_{q}\right)^{e_{\mathfrak{r}}}=\left(\mathfrak{q} B_{\mathfrak{q}}\right)^{e_{\mathfrak{q}}},
$$

since $\mathfrak{r} B_{\mathfrak{q}}=B_{\mathfrak{q}}$ for all primes $\mathfrak{r} \neq \mathfrak{q}$ (because elements of $\mathfrak{r}-\mathfrak{q}$ are units in $B_{\mathfrak{q}}$). For any $m \in \mathbb{Z}$ we have $\mathfrak{p}^{m} B_{\mathfrak{q}}=\left(\mathfrak{q} B_{\mathfrak{q}}\right)^{e_{\mathfrak{q}} m}$. Therefore $v_{\mathfrak{q}}\left(\mathfrak{p}^{m} B_{\mathfrak{q}}\right)=e_{\mathfrak{q}} m=e_{\mathfrak{q}} v_{\mathfrak{p}}\left(\mathfrak{p}^{m} A_{\mathfrak{p}}\right)$, and it follows that for any $I \in \mathcal{I}_{A}$ we have $v_{\mathfrak{q}}\left(I B_{\mathfrak{q}}\right)=e_{\mathfrak{q}} v_{\mathfrak{p}}\left(I A_{\mathfrak{p}}\right)$. In particular, for any $x \in K^{\times}$we have

$$
v_{\mathfrak{q}}(x)=v_{\mathfrak{q}}\left(x B_{\mathfrak{q}}\right)=e_{\mathfrak{q}} v_{\mathfrak{p}}\left(x A_{\mathfrak{p}}\right)=e_{\mathfrak{q}} v_{\mathfrak{p}}(x),
$$

which shows that $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index $e_{\mathfrak{q}}$ as claimed.
If \mathfrak{q} and \mathfrak{r} are two distinct primes above \mathfrak{p} then neither contains the other and for any $x \in \mathfrak{q}-\mathfrak{r}$ we have $v_{\mathfrak{q}}(x)>0 \geq v_{\mathfrak{r}}(x)$, thus $v_{\mathfrak{q}} \neq v_{\mathfrak{r}}$ and the map $\mathfrak{q} \mapsto v_{\mathfrak{q}}$ is injective..

Let w be a discrete valuation on L that extends $v_{\mathfrak{p}}$, let $W=\{x \in L: w(x) \geq 0\}$ be the associated DVR, and let $\mathfrak{m}=\{x \in L: w(x)>0\}$ be its maximal ideal. Since $\left.w\right|_{K}=e v_{\mathfrak{p}}$, the discrete valuation w is nonnegative on A, so $A \subseteq W$. And W is integrally closed in its fraction field L, since it is a DVR, so $B \subseteq W$. Let $\mathfrak{q}=\mathfrak{m} \cap B$. Then \mathfrak{q} is prime (since \mathfrak{m} is), and $\mathfrak{p}=\mathfrak{m} \cap A=\mathfrak{q} \cap A$, so \mathfrak{q} lies over \mathfrak{p}. The ring W contains $B_{\mathfrak{q}}$ and is properly contained in L, which is the fraction field of $B_{\mathfrak{q}}$. But there are no intermediate rings between a DVR and its fraction field (such a ring R would contain an element $x \in L$ with $v_{\mathfrak{q}}(x)<0$ and also every $x \in L$ with $v_{\mathfrak{q}}(x) \geq 0$, and this implies $\left.R=L\right)$, so $W=B_{\mathfrak{q}}$ and $w=v_{\mathfrak{q}}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.785 Number Theory I

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

