2.001 - MECHANICS AND MATERIALS I
Lecture \#20
11/20/2006
Prof. Carol Livermore

Beam Bending
Consider a "slender" (long and thin) beam

Q: What happens inside when we bend it?

Assume:

Cross-section and material properties are constant along the length Symmetric cross-section about x-y plane

Pure Bending

What is radius of curvature (ρ) when M is applied?

If it is in compression on one side and tension on the other, there must be a plain with no strain. This is called the neutral axis.
Note: The coordinate system is fixed such that $y=0$ is on the neutral axis.
Compatibility

$$
\begin{gathered}
L_{0} \text { onneutralaxis }=\text { Undeformed Length } \\
L_{0}=\rho \Delta \varphi \\
L(y)=(\rho-y) \Delta \varphi
\end{gathered}
$$

$\epsilon_{x x}=\frac{\text { Change in length in } \mathrm{x}}{\text { Original length in x }}=\frac{\Delta L}{L_{0}}=\frac{L(y)-L_{0}}{L_{0}}=\frac{(\rho-y) \Delta \varphi-\rho \Delta \varphi}{\rho \Delta \varphi}=\frac{-\Delta \varphi y}{\rho \Delta \varphi}$

$$
\epsilon_{x x}=\frac{-y}{\rho}
$$

Note: This is just a result of compatibility. It is purely geometric.
Note: $\quad \rho \rightarrow \infty$: Flat Beam

$\rho \rightarrow 0$: Very Sharp Curve

Define curvature (κ)

$$
\kappa=\frac{1}{\rho}
$$

$\kappa \rightarrow 0$: Beam is flat
$\kappa \rightarrow \infty$: Beam is highly curved
$\epsilon_{x y}=\epsilon_{x z}=0$ due to symmetry.
Use constitutive relationship:

$$
\begin{gathered}
\epsilon_{x x}=\frac{1}{E}\left[\sigma_{x x}-\nu\left(\sigma_{y y}+\sigma_{z z}\right)\right]=\frac{-y}{\rho} \\
\epsilon_{y y}=\frac{1}{E}\left[\sigma_{y y}-\nu\left(\sigma_{x x}+\sigma_{z z}\right)\right]= \\
\epsilon_{z z}=\frac{1}{E}\left[\sigma_{z z}-\nu\left(\sigma_{x x}+\sigma_{y y}\right)\right]= \\
\epsilon_{x y}=\frac{\sigma_{x y}}{2 G} \\
\epsilon_{y z}=\frac{\sigma_{y z}}{2 G} \\
\epsilon_{x z}=\frac{\sigma_{x z}}{2 G}
\end{gathered}
$$

Known:

1. Not applying any surface tractions in y or z. So:

$$
\sigma_{y y}=\sigma_{z z}=\sigma_{y z}=0 \text { On the surface }
$$

Since the beam is thin:

$$
\sigma_{y y}=\sigma_{z z}=\sigma_{y z}=0
$$

Substitute into constitutive relationships:

$$
\begin{gathered}
\epsilon_{x x}=\frac{\sigma_{x x}}{E} \Rightarrow \sigma_{x x}=\frac{-y}{\rho} E \\
\epsilon_{y y}=\frac{-\nu}{E} \epsilon_{x x}=\frac{-\nu}{E}\left(\frac{-y}{\rho} E\right)=\frac{\nu y}{\rho} \\
\epsilon_{z z}=\frac{\nu y}{\rho} \\
\epsilon_{x y}=\frac{\sigma_{x y}}{2 G}=0 \Rightarrow \sigma_{x y}=0 \\
\epsilon_{y z}=\frac{\sigma_{y z}}{2 G}=0 \Rightarrow \sigma_{y z}=0 \\
\epsilon_{x z}=\frac{\sigma_{x z}}{2 G}=0 \Rightarrow \sigma_{x z}=0
\end{gathered}
$$

$\epsilon_{z z}$ is the anti-elastic curvature.

$\epsilon_{y y}$ extends the height of the compressed side and shrinks the height of the tensile side.
Where is the neutral axis? \Rightarrow use equilibrium.

$$
\begin{gathered}
\epsilon_{x x}=\frac{-y}{\rho} \\
\sigma_{x x}=\epsilon_{x x} E=\frac{-y E}{\rho}
\end{gathered}
$$

Special Case: (E is constant)

$$
\frac{-E}{\rho} \int_{A} y d A=0
$$

So:

$$
\begin{gathered}
\int_{A} y d A=0 \\
\int_{A} y d A=\bar{y} A
\end{gathered}
$$

$\bar{y}=$ distance off $y=0$ at which the centroid lies so the neutral axis passes through the centroid of the cross-section for this special case.

$$
\begin{gathered}
\sum M_{z}=0 \\
-M-\int_{A} y d f_{x}=0 \\
-M-\int_{A} \sigma_{x x}(y) d A=0 \\
-M-\int_{A} y\left(\frac{-y}{\rho} E\right) d A=0 \\
M=\int_{A} \frac{y^{2}}{\rho} E d A
\end{gathered}
$$

Note: This is a general equation.
Special Case: E is contant

$$
\begin{gathered}
M=\frac{E}{\rho} \int_{A} y^{2} d A \\
\int_{A} y^{2} d A \text { Moment of Inertia (I) }
\end{gathered}
$$

So for special case:

$$
M=E I\left(\frac{1}{\rho}\right)
$$

Note similarity to " $\mathrm{F}=\mathrm{kx}$ " of a spring.

