2.001 - MECHANICS AND MATERIALS I
 Lecture \#2
 9/11/2006

Prof. Carol Livermore

TOPIC: LOADING AND SUPPORT CONDITIONS

STRUCTURAL ANALYSIS

Tools we need:

1. Recall loading conditions (last time)

a. Forces - ("Point Loads ") Point of Application

Magnitude
Direction
b. Moments

From forces applied at a distance from a point.
2. Recall equation of static equilibrium (last time)
$\sum \vec{F}=0 \Rightarrow \sum F_{x}=0, \sum F_{y}=0, \sum F_{z}=0$
$\sum M_{0}=0 \Rightarrow \sum M_{x}=0, \sum M_{y}=0, \sum M_{z}=0$
3. Distributed Loads - Force per unit length

4. Concentrated Moment - Moment applied at a point (EX: Screwdriver)

FREE BODY DIAGRAMS

Draw like a mechanical engineer

Fixed Support
Cannot translate horizontally or vertically. Cannot rotate.

Pinned Support

- Cannot translate.
- Free to rotate.

Pinned on Rollers

- Cannot translate in y.
- Can translate in x.
- Free to rotate.

REACTIONS: (Forces applied by a support)

No $\rightleftharpoons \Rightarrow$ can apply R_{x}.
$\uparrow \downarrow \Rightarrow$ can apply R_{y}.
No rotate \Rightarrow can apply M.

So:

Need R_{x}, R_{y}, M

Need R_{x}, R_{y}

Need R_{y}

OTHERS:
CABLE:

SMOOTH SUPPORT:

EXAMPLE: DIVING BOARD
Find reactions from the supports for this structure.

1. How to draw a Free Body Diagram (FBD)
i. Remove all external supports.
ii. Draw all relevant dimensions.
iii. Depict all external forces and moments.
iv. Coordinate system.
2. Apply the equations of equilibrium.

$$
\begin{aligned}
& \sum F_{x}: R_{A x}=0 \\
& \sum F_{y}:-P+R_{A y}=0 \\
& \sum M_{A z}: M_{A}-L P+\left(R_{A x}\right)(0)+\left(R_{A y}\right)(0)=0
\end{aligned}
$$

3. Solve. $\quad R_{A x}=0$
$R_{A y}=P$
$M_{A}=L P$
4. Check

\Rightarrow looks good!
EXAMPLE:

Draw FBD.

Apply equilibrium.

$$
\begin{aligned}
& \sum F_{x}: R_{A x}=0 \\
& \sum F_{y}: R_{A y}+R_{B y}-\int_{0}^{L}\left(-q_{0}\right) d x=0 \\
& \sum M_{A}: R_{B y} L+\int_{0}^{L}\left(-q_{0}\right) x d x=0=R_{B y} L-\frac{q_{0} L^{2}}{2}
\end{aligned}
$$

Solve. $\quad R_{A x}=0$

$$
\begin{aligned}
& R_{B y}=\frac{q_{0} L^{2}}{2 L}=\frac{q_{0} L}{2} \Rightarrow R_{B y}=\frac{q_{0} L}{2} \\
& R_{A y}+\frac{q_{0} L}{2}-q_{0} L=0 \Rightarrow R_{A y}=\frac{q_{0} L}{2}
\end{aligned}
$$

Check.

\Rightarrow looks good!
EXAMPLE: PLANAR TRUSS

Q: What are the forces on each member?

Approach:
Look at whole structure.
Look at each piece individually.
FBD of Whole Structure

$\overrightarrow{R_{B}}=R_{B_{x}} \hat{i}+R_{B_{y}} \hat{j}$
Equations of Equilibrium:

$$
\begin{aligned}
& \sum F_{x}=0 \\
& \quad R_{B_{x}}+P=0 \\
& \sum F_{y}=0 \\
& \quad R_{A_{y}}+R_{B_{y}}=0 \\
& \sum M_{A}=0 \\
& \quad R_{B_{y}} l+(P)(-\sin \theta) l=0 \\
& \text { OR } \quad r_{\overrightarrow{A C}} \times \vec{P}+r_{\overrightarrow{A B}} \times \overrightarrow{R_{B}}=0
\end{aligned}
$$

Solve. $\quad R_{B_{x}}=-P$

$$
\begin{aligned}
& R_{B_{y}}=P \sin \theta \\
& R_{A_{y}}=-P \sin \theta
\end{aligned}
$$

Check.

