# 2.001 - MECHANICS AND MATERIALS I 

## Lecture \#23

11/29/2006
Prof. Carol Livermore
Recall Moment-Curvature Equation

$$
\begin{gathered}
M(x)=\frac{E(x) I(x)}{\rho(x)} \text { or } E I_{e f f} \text { for composite beams. } \\
\frac{1}{\rho(x)}=\frac{\partial^{2} v}{\partial x^{2}}=\frac{M(x)}{E(x) I(x)}
\end{gathered}
$$

Approach: Integrate, get $v(x), \theta(x)=\frac{d v(x)}{d x}$. Use boundary conditions to get constants of integration.

Library of Solutions (Thus Far):


$$
v(x)=\frac{M x^{2}}{2 E I}
$$



$$
\begin{gathered}
v(x)=\frac{-P x^{2}}{2 E I}\left(L-\frac{x}{3}\right) \\
v_{t i p}(x=L)=\frac{-P L^{3}}{3 E I}
\end{gathered}
$$

Recall example from last time:


$$
\begin{gathered}
M(x)=P\left(1-\frac{a}{L}\right) x, 0 \leq x \leq a \\
M(x)=P\left(1-\frac{a}{L}\right) x-P(x-a), a \leq x \leq L
\end{gathered}
$$



For $a=\frac{L}{2}$ (symmetric special case)

$$
\begin{gathered}
M(x)=\frac{P x}{2}, 0 \leq x \leq \frac{L}{2} \\
M(x)=\frac{-P x}{2}+\frac{P L}{2} \frac{L}{2} \leq x \leq L
\end{gathered}
$$

Left:

$$
\begin{gathered}
\frac{d^{2} v}{d x^{2}}=\frac{P x}{2 E I} \\
\frac{d v}{d x}=\frac{P x^{2}}{4 E I}+c_{1} \\
v=\frac{P x^{3}}{12 E I}+c_{1} x+c_{2} \\
\text { Boundary Conditions: } \quad v(x=0)=0 \Rightarrow c_{2}=0 \\
\theta\left(x=\frac{L}{2}\right)=0
\end{gathered} \quad 0=\frac{P}{4 E I}\left(\frac{L}{2}\right)^{2}+c_{1} \Rightarrow c_{1}=\frac{-P L^{2}}{16 E I}
$$

So:
Left:

$$
v(x)=\frac{P}{12 E I} x^{3}-\frac{P L^{2}}{16 E I} x, 0 \leq x \leq \frac{L}{2}
$$

Right:

$$
v(x)=\frac{P}{12 E I}(L-x)^{3}-\frac{P L^{2}}{16 E I}(L-x), 0 \leq x \leq \frac{L}{2}
$$

Note: The right is the same as the left but starting at $x=L$ and moving left. This is due to symmetry. This situation is called 3 -point bending.


One can define a stiffness in " $\mathrm{F}=\mathrm{kx}$ " type equation.
Find $v_{\max }$

$$
\begin{gathered}
v\left(\frac{L}{2}\right)=\frac{P}{E I}\left[\frac{1}{12}\left(\frac{L}{2}\right)^{3}-\frac{1}{16}\left(\frac{L}{2}\right) L^{2}\right] \\
v_{\max }=\frac{P L^{3}}{E I}\left[\frac{1}{3}-1\right] \\
v_{\max }=\frac{-P L^{3}}{48 E I}
\end{gathered}
$$

$F=k x$
$-P=k v_{\max }$
So: $k=\frac{48 E I}{L^{3}}$
Now solve again without using symmetry:
Recall:

$$
v_{L}(x)=\frac{P x^{3}}{12 E I}+c_{1} x+c_{2}, 0 \leq x \leq \frac{L}{2}
$$

Recall:

$$
\begin{gathered}
M_{z}(x)=\frac{-P x}{2}+\frac{P L}{2}, \frac{L}{2} \leq x \leq L \\
\frac{d^{2} v_{r}}{d x^{2}}=\frac{1}{E I}\left[\frac{-P x}{2}+\frac{P L}{2}\right]
\end{gathered}
$$

$$
\begin{gathered}
\theta_{R}(x)=\frac{d v_{r}}{d x}=\frac{1}{E I}\left[\frac{-P x^{2}}{4}+\frac{P L x}{2}\right]+c_{3} \\
v_{r}=\frac{1}{E I}\left[\frac{-P x^{3}}{12}+\frac{P L x^{2}}{4}\right]+c_{3} x+c_{4}
\end{gathered}
$$

Boundary Conditions

1. $v_{L}(0)=0$
2. $v_{R}(L)=0$
3. $v_{L}\left(\frac{L}{2}\right)=v_{R}\left(\frac{L}{2}\right)$
4. $\theta_{L}\left(\frac{L}{2}\right)=\theta_{R}\left(\frac{L}{2}\right)$

Use 1.

$$
\begin{gathered}
v_{L}(0)=0 \\
c_{2}=0
\end{gathered}
$$

Use 2.

$$
\begin{gathered}
v_{R}(L)=0 \\
\frac{P}{E I}\left[\frac{-L^{3}}{12}+\frac{L^{3}}{4}\right]+c_{3} L+c_{4} \\
c_{3} L+c_{4}=\frac{-P L^{3}}{6 E I}
\end{gathered}
$$

Use 3.

$$
\begin{gathered}
v_{L}\left(\frac{L}{2}\right)=v_{R}\left(\frac{L}{2}\right) \\
\frac{P}{E I}\left[\frac{1}{12}\left(\frac{L}{2}\right)^{3}\right]+c_{1} \frac{L}{2}=\frac{P}{E I}\left[\frac{-1}{12}\left(\frac{L}{2}\right)^{3}+\frac{L^{3}}{16}\right]+c_{3} \frac{L}{2}+c_{4} \\
\left(c_{3}-c_{1}\right) \frac{L}{2}+c_{4}=\frac{P L^{3}}{E I}\left(\frac{-1}{24}\right)
\end{gathered}
$$

Use 4.

$$
\begin{aligned}
\theta_{L}\left(\frac{L}{2}\right) & =\theta_{R}\left(\frac{L}{2}\right) \\
c_{3}-c_{1} & =\frac{-P L^{2}}{8 E I}
\end{aligned}
$$

Solve for $c_{1}, c_{2}, c_{3}$.
Note: Applying symmetry was easier.
Example: Statically Indeterminate


FBD


Solve using superposition

1. Pretend $R_{B y}$ is known.

2. Find $v(x)$ and $v_{t i p}$.

$$
\begin{gathered}
v(x)=\frac{M}{2 E I} x^{2}+\frac{R_{B y} x^{2}}{2 E I}\left(L-\frac{x}{3}\right) \\
v_{t i p}=\frac{M L^{2}}{2 E I}+\frac{R_{B y} L^{3}}{3 E I}
\end{gathered}
$$

3. Note $v_{t i p}=0$ due to support. This is an additional boundary condition.

$$
\begin{gathered}
\frac{M L^{2}}{2 E I}+\frac{R_{B y} L^{3}}{3 E I}=0 \\
R_{B y}=\frac{-3}{2} \frac{M}{L}
\end{gathered}
$$

4. Solve for $v(x)$.

$$
v(x)=\frac{M}{2 E I} x^{2}-\frac{3}{2} \frac{M}{L}\left(\frac{x^{2}}{2 E I}\right)\left(L-\frac{x}{3}\right)
$$

Discontinuity Functions

$$
\begin{gathered}
<x-a>\equiv 0 \text { for } x-a<0 \\
<x-a>\equiv x-z \text { for } x-a>0
\end{gathered}
$$



$$
\int<x-a>^{n} d x=\frac{<x-a>^{n+1}}{n+1}+c
$$

So recall example:


Rewrite moment equation.

$$
\begin{gathered}
M_{z}(x)=P\left(1-\frac{a}{L}\right) x-P<x-a> \\
\frac{d^{2} v(x)}{d x^{2}}=\frac{1}{E I}\left[P\left(1-\frac{a}{L}\right) x-P<x-a>\right]
\end{gathered}
$$

$$
\begin{gathered}
\frac{d v(x)}{d x}=\frac{1}{E I}\left[P\left(1-\frac{a}{L}\right) x-P<x-a>\right]+c_{1} \\
v(x)=\frac{1}{E I}\left[P\left(1-\frac{a}{L} \frac{x^{3}}{6}-P \frac{<x-a>^{3}}{6}\right]+c_{1} x+c_{2}\right.
\end{gathered}
$$

Boundary Conditions:

$$
\begin{aligned}
& v(0)=0 \Rightarrow c_{2}=0 \\
& v(L)=0 \Rightarrow c_{1}=\frac{-P}{E I L}\left[\left(1-\frac{a}{L}\right) \frac{L^{3}}{6}-\frac{(L-a)^{3}}{6}\right.
\end{aligned}
$$

So:

$$
v(x)=\frac{P}{E I}\left[\left(1-\frac{a}{L}\right) \frac{x^{3}}{6}-\frac{\left\langle x-a>^{3}\right.}{6}\right]-\frac{P}{E I L}\left[\left(1-\frac{a}{L}\right) \frac{L^{3}}{6}-\frac{(L-a)^{3}}{6}\right] x
$$

So:

$$
\begin{gathered}
v_{L}(x)=\frac{P}{E I}\left[\left(1-\frac{a}{L}\right) \frac{x^{3}}{6}\right]-\frac{P}{E I}\left[\left(1-\frac{a}{L}\right) \frac{L^{3}}{6}-\frac{(L-a)^{3}}{6}\right] \frac{x}{L} \\
v_{R}(x)=\frac{P}{E I}\left[\left(1-\frac{a}{L}\right) \frac{x^{3}}{6}-\frac{(x-a)^{3}}{6}\right]-\frac{P}{E I}\left[\left(1-\frac{a}{L}\right) \frac{L^{3}}{6}-\frac{(L-a)^{3}}{6}\right] \frac{x}{L}
\end{gathered}
$$

Check answer. Try $a=\frac{L}{2}$ and compare to earlier result.

$$
v\left(\frac{L}{2}\right)=\frac{-P L^{3}}{48 E I}
$$

