Lecture \#24
12/4/2006
Prof. Carol Livermore
Torsion (Twisting)

$$
M_{x x}=M_{t}
$$

Examples where torsion is important:

- Screwdriver
- Drills
- Propellers

Use superposition
Example: Unifrom along length, has circular symmetry

$$
\varphi(x)=\text { Angle of Twist (Total) at Point } \mathrm{x}(\text { Built Up) }
$$

Compatibility:

$$
\begin{gathered}
d=\varphi(x+d x) R-\varphi(x) R \\
d=\gamma d x
\end{gathered}
$$

So:

$$
\begin{gathered}
\gamma d x=\varphi(x+d x) R-\varphi(x) R \\
\gamma d x=d \varphi R \\
\gamma=R \frac{d \gamma}{d x}
\end{gathered}
$$

What is $\gamma ?$

So:

$$
\gamma=\gamma_{r \theta} \text { Shear Strain }
$$

Thus:

$$
\gamma_{r \theta}=R \frac{d \varphi}{d x}
$$

And:

$$
\begin{gathered}
\epsilon_{\theta x}=\frac{\gamma}{2}=\frac{R}{2} \frac{d \varphi}{d x} \\
\epsilon_{r r}=\epsilon_{\theta \theta}=\epsilon_{x x}=\epsilon_{r \theta}=\epsilon_{r x}=0
\end{gathered}
$$

Constitutive Relations:

$$
\begin{gathered}
\sigma_{\theta x}=2 G \epsilon_{\theta x}=G \gamma_{x \theta}=G r \frac{d \varphi}{d x}, \text { where } G \text { is the shear modulus. } \\
G=\frac{E}{2(1+\nu)} \\
\sigma_{x x}=\sigma_{\theta \theta}=\sigma_{r r}=\sigma_{r \theta}=\sigma_{r x}=0 \\
\sigma_{\theta x}=G r \frac{d \varphi}{d x}
\end{gathered}
$$

Recall beam bending $\sigma_{x x}=\frac{-E y}{\rho}$.
Equilibrium:

$$
M_{t}=\frac{d \varphi}{d x} \int_{A} G r^{2} d A
$$

Recall beam bending:

$$
M=\frac{1}{\rho} \int_{A} E y^{2} d A
$$

Note:
$\frac{d \varphi}{d x}$: what happens
$\int_{A}^{a x} G r^{2} d A$: effective stiffness
M_{t} : what we apply
If G is constant "Special Case"

$$
\begin{gathered}
M_{t}=\frac{d \varphi}{d x} G \int_{A} r^{2} d A \\
J \equiv \int_{A} r^{2} d A \text { Polar Moment of Inertia }
\end{gathered}
$$

So for "special case" G is constant.

$$
M_{t}=G J \frac{d \varphi}{d x}
$$

Recall beam bending:

$$
M=\frac{E I}{\rho}
$$

If G is not constant:

$$
(G J)_{e f f}=\int_{A} G r^{2} d A
$$

When G is constant:

$$
\begin{gathered}
M_{t}=G J \frac{d \varphi}{d x} \text { and generally } \sigma_{\theta x}=G r \frac{d \varphi}{d x} \\
\frac{M_{t}}{G J}=\frac{\sigma_{\theta x}}{G r}
\end{gathered}
$$

So:

$$
\sigma_{\theta x}=\frac{M_{t} r}{J}
$$

Example for J

1. Cicular solid shaft

$$
\begin{aligned}
J=\int_{A} r^{2} d A & =\int_{0}^{2 \pi} \int_{0}^{R} r^{2} r d r d \theta \\
& =\int_{0}^{2 \pi} \frac{R^{4}}{4} d \theta \\
J & =\frac{\pi}{2} R^{4}
\end{aligned}
$$

2. Hollow circular shaft

$$
\begin{aligned}
J & =\int_{0}^{2 \pi} \int_{R_{1}}^{R_{2}} r^{3} d r d \theta \\
J & =\frac{\pi}{2}\left(R_{2}^{4}-R_{1}^{4}\right) \\
\text { posite } & =(G J)_{\text {inside }}+(\\
& =\frac{G_{1} \pi R_{1}^{4}}{2}+\frac{G_{1} 7}{2}
\end{aligned}
$$

$$
(G J)_{\text {composite }}=(G J)_{\text {inside }}+(G J)_{\text {outside }}
$$

$$
=\frac{G_{1} \pi R_{1}^{4}}{2}+\frac{G_{1} \pi}{2}\left[R_{2}^{4}-R_{1}^{4}\right]
$$

Or:

$$
(G J)_{e f f}=\int_{0}^{2 \pi}\left[\int_{0}^{R_{1}} G_{1} r^{3} d r+\int_{R_{1}}^{R_{2}} G_{2} r^{3} d r\right] d \theta
$$

Note: Due to powers of order 4, material buys you more stiffness on the outside than the inside.

So why don't we make R huge?

Now look at it at 45°

It will fail in compression and it will buckle.
What is the total angle of twist?

For one material (constant G)

$$
M_{t}=G J \frac{d \varphi}{d x}
$$

So:

$$
\begin{gathered}
\frac{d \varphi}{d x}=\frac{M_{t}}{G J} \\
\varphi(x)=\frac{M_{t}}{G J} x+c_{1}
\end{gathered}
$$

Boundary Condition:
At $x=0, \varphi(0)=0 \Rightarrow c_{1}=0$.
So:

$$
\varphi(x)=\frac{M_{t}}{G J} x
$$

The total angle of twist $\phi(L)$

$$
\phi(L)=\frac{M_{t} L}{G J}
$$

