2.001 - MECHANICS AND MATERIALS I

Lecture \#25
12/6/2006
Prof. Carol Livermore
Recall from last time:

	Beam Bending	Shaft Torsion
Deformation	$\frac{1}{\rho}=k=\frac{d \theta}{d x}$	$\frac{d \varphi}{d x}$
Strain (Compatibility)	$\epsilon_{x x}=\frac{-y}{\rho}$	$\epsilon_{\theta x}=\frac{r}{2} \frac{d \varphi}{d x}$
Equilibrium	$M_{z}=\int_{A} \sigma_{x x} y d A$	$M_{t}=\int_{A} \sigma_{\theta x} r d A$
Stress (Constitutive)	$\sigma_{x x}=\frac{-E y}{\rho}$	$\sigma_{\theta \theta}=G r \frac{d \varphi}{d x}$
Moment-Deformation	$M_{z}=\frac{E I}{\rho}$	$M_{t}=G J \frac{d \varphi}{d x}$
Moment of Inertia	$I=\int_{A} y^{2} d A$	$J=\int_{A} r^{2} d A$
Stress-Loading	$\sigma_{x x}=\frac{-M_{z} y}{I}$	$\sigma_{\theta x}=\frac{M_{t} r}{J}$
Deflections/Angle of Twist	$\frac{d \theta}{d x}=\frac{1}{\rho}=\frac{M_{z}}{E I}$	$\frac{d \varphi}{d x}=\frac{M_{t}}{G J}$

Example:

What is $\varphi(3 L)$?

$$
\begin{aligned}
& M_{t}=T, 0 \leq x \leq 2 L \\
& M_{t}=0,0 \leq x \leq 3 L
\end{aligned}
$$

$$
\begin{gathered}
M_{t}=G J \frac{d \varphi}{d x} \\
J=\frac{\pi}{2} R_{1}^{4}=J_{1}, 0 \leq x \leq L \\
J=\frac{\pi}{2} R_{2}^{4}=J_{2}, L \leq x \leq 3 L \\
\frac{d \varphi}{d x}=\frac{T}{G J_{1}}, 0 \leq x \leq L \\
\frac{d \varphi}{d x}=\frac{T}{G J_{2}}, L \leq x \leq 2 L \\
\frac{d \varphi}{d x}=0,2 L \leq x \leq 3 L
\end{gathered}
$$

So:

$$
\begin{gathered}
\varphi(x)=\frac{T}{G J_{1}} x+c_{1}, 0 \leq x \leq L \\
\varphi(x)=\frac{T}{G J_{2}} x+c_{2}, L \leq x \leq 2 L \\
\varphi(x)=c_{3}, 2 L \leq x \leq 3 L
\end{gathered}
$$

Boundary Conditions:
$\varphi(0)=0 \Rightarrow c_{1}=0$
$\varphi(L)$ is continuous $\frac{T L}{G J_{1}}=\frac{T L}{G J_{2}}+c_{2} \Rightarrow c_{2}=\frac{T L}{G}\left(\frac{1}{J_{1}}-\frac{1}{J_{2}}\right)$
$\varphi(2 L)$ is continuous. $\frac{2 T L}{G J_{2}}+\frac{T L}{G}\left(\frac{1}{J_{1}}-\frac{1}{J_{2}}\right)=c_{3} \Rightarrow c_{3}=\frac{T L}{G}\left[\frac{1}{J_{1}}+\frac{1}{J_{2}}\right]$
Thus:

$$
\begin{aligned}
\varphi(x) & =\frac{T}{G J_{1}}, 0 \leq x \leq L \\
& =\frac{T}{G J_{2}} x+\frac{T L}{G}\left(\frac{1}{J_{1}}-\frac{1}{J_{2}}\right) L \leq x \leq 2 L \\
& =\frac{T L}{G}\left[\frac{1}{J_{1}}+\frac{1}{J_{2}}\right], 2 L \leq x \leq 3 L
\end{aligned}
$$

So:

$$
\varphi(3 L)=\frac{T L}{G}\left[\frac{1}{J_{1}}+\frac{1}{J_{2}}\right]
$$

Example: Hollow Shaft

Q: Max stress? Angle of twist?

FBD

$$
\begin{gathered}
\sum M_{x}=0 \\
M_{t}-\int_{0}^{L} t d x=0 \\
M_{t}=t L
\end{gathered}
$$

FBD Cut 1

$$
\begin{gathered}
\sum M_{x}=0 \\
t L-t x+M_{z}(x)=0 \\
M_{t}(z)=t(x-L)
\end{gathered}
$$

$$
J_{\text {hollowshaft }}=\frac{\pi}{2}\left(R_{2}^{4}-R_{1}^{4}\right)
$$

So:

$$
\sigma_{\theta x}=\frac{M_{t} r}{J}=\frac{-t(L-x) r}{\frac{\pi}{2}\left(R_{2}^{4}-R_{1}^{4}\right)}
$$

Max shear stress

$$
\sigma_{\theta x_{\max }}=\frac{M_{t}(0) R_{2}}{J}=\frac{-t L R_{2}}{\frac{\pi}{2}\left(R_{2}^{4}-R_{1}^{4}\right)}
$$

Angle of Twist

$$
\begin{gathered}
\frac{d \varphi}{d x}=\frac{M_{t}}{G J} \\
\frac{d \varphi}{d x}=\frac{-t(L-x)}{G J}
\end{gathered}
$$

So:

$$
\begin{gathered}
\varphi(x)=\frac{-t}{G J}\left[L x-\frac{x^{2}}{2}\right] \\
\varphi(L)=\frac{-t}{G J} \frac{L^{2}}{2}
\end{gathered}
$$

Example:

Find: $\sigma_{\theta x_{\max }}$

$$
\begin{aligned}
M_{t}= & \frac{d \varphi}{d x} \int_{A} G(r) r^{2} d A \\
= & \frac{d \varphi}{d x}\left[\int_{0}^{2 \pi} \int_{0}^{R_{1}} 3 G_{1} r^{2} r d r d \theta+\int_{0}^{2 \pi} \int_{R_{1}}^{2 R_{1}} G_{1} r^{2} r d r d \theta\right] \\
= & 2 \pi\left(\left[3 G_{1} \frac{r^{4}}{4}\right]_{0}^{R_{1}}+\left[G_{1} \frac{r^{4}}{4}\right]_{R_{1}}^{2 R_{1}}\right) \\
= & \frac{d \varphi}{d x} 2 \pi\left[\frac{3}{4} G_{1} R^{4}+\frac{G_{1}}{4}\left(16 R^{4}-R^{4}\right)\right] \\
& T=\frac{d \varphi}{d x} 9 \pi G_{1} R^{4}
\end{aligned}
$$

Note: Could have $(G J)_{e f f}=\sum_{i} G_{i} J_{i}$
So:

$$
\frac{d \varphi}{d x}=\frac{T}{9 \pi G_{1} R^{4}}
$$

And:

$$
\epsilon_{\theta x}=\frac{r}{2} \frac{T}{9 \pi G_{1} R^{4}}
$$

Recall:

$$
\sigma_{\theta x}=2 G(r) \epsilon_{\theta x}
$$

$$
\begin{aligned}
\sigma_{\theta x} & =2\left(3 G_{1}\right) \frac{r}{2} \frac{T}{9 \pi G_{1} R^{4}}, 0<r<R \\
\sigma_{\theta x} & =2\left(G_{1}\right) \frac{r}{2} \frac{T}{9 \pi G_{1} R^{4}}, R<r<2 R
\end{aligned}
$$

$$
\sigma_{\theta x_{\max }}=\sigma_{\theta x}(R)=\frac{T}{3 \pi R^{3}}
$$

Example: Superposition

Q: What are the principal stresses? Principal directions?
Linearity:

$$
\sigma(\operatorname{Load} 1+\operatorname{Load} 2)=\sigma(\operatorname{Load} 1)+\sigma(\operatorname{Load} 2)
$$

Recall Pressure Vessels:
FBD of Cut:

$$
-P\left(\pi R^{2}\right)+\sigma_{x x}(2 \pi R t)=0
$$

$$
\sigma_{x x}=\frac{P R}{2 t}
$$

FBD of Cut:

$$
\begin{gathered}
\sum F_{y}=0 \\
P(2 R)(L)-\sigma_{\theta \theta}(2 t)(L)=0 \\
\sigma_{\theta \theta}=\frac{P R}{t}
\end{gathered}
$$

So:

$$
[\sigma]_{p}=\left|\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{P R}{t} & 0 \\
0 & 0 & \frac{P R}{2 t}
\end{array}\right|
$$

For torsional load (1 material):

$$
\sigma_{\theta x}=\frac{M_{t} r}{J}=\frac{T R}{J_{\text {hollow }}}
$$

Note: $J_{\text {hollow }}$ was calculated earlier.

$$
\begin{gathered}
{[\sigma]_{T}=\left|\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \frac{T R}{J} \\
0 & \frac{T R}{J} & 0
\end{array}\right|} \\
J=2 \pi\left(\frac{(2+t)^{4}}{4}-\frac{R^{4}}{4}\right) \approx 2 \pi R^{3} t \text { throw out higher order terms }
\end{gathered}
$$

$$
[\sigma]=[\sigma]_{T}+[\sigma]_{P}=\left|\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{p R}{T} & \frac{T R}{J} \\
0 & \frac{T R}{J} & \frac{p R}{2 T}
\end{array}\right|
$$

Note: This is plane stress.

Draw Mohr's Circle

$$
\begin{gathered}
C=\left(\frac{3 p R}{4 t}, 0\right) \\
R=\sqrt{\left(\frac{p R}{4 t}\right)^{2}+\left(\frac{T R}{J}\right)^{2}} \\
\sigma_{1,2}=\frac{3 p R}{4 T} \pm \sqrt{\left(\frac{p R}{4 t}\right)^{2}+\left(\frac{T R}{J}\right)^{2}} \\
\tan \theta=\frac{\left(\frac{T R}{J}\right)}{\left(\frac{p R}{4 T}\right)}
\end{gathered}
$$

