2.001 - MECHANICS AND MATERIALS I
 Lecture \#26
 12/11/2006
 Prof. Carol Livermore

Energy Methods
3 Basic Ingredients of Mechanics:

1. Equilibrium
2. Constitutive Relations
$\sigma-\epsilon \ldots$ Stress-Strain $F-\delta$ Force-Deformation
3. Compatibility

Dealing with geometric considerations
Castigliano's Theorem
Start with work:

$$
W=\int \vec{F} \cdot d \vec{s}
$$

Conservative Forces:
EX: Gravity

$$
\begin{aligned}
u=m g h & \Rightarrow \text { Potential Energy, Path Independent } \\
W & =\int \vec{F} \cdot d \vec{s}=\int_{0}^{h} m g d z=m g h
\end{aligned}
$$

Note: Elastic systems are conservative.
Plastic deformation is not conservative.
EX: Springs

Energy $=1 / 2 k \delta^{2}$

$$
W=\int_{0}^{\delta} P d \delta=\int_{0}^{\delta} k \delta d \delta=\frac{1}{2} k \delta^{2}
$$

Stored Energy = Work Put In

$$
U=W
$$

What if the spring were stretched a little further?

$$
\begin{aligned}
d U & =P d \delta \\
P & =\frac{d U}{d \delta}
\end{aligned}
$$

Complementary Energy (U^{*})

$$
U^{*}=\int \delta d P
$$

Note: $U=U^{*}$ due to linearity

$U \neq U^{*}$ if this is non-linear
What if the load were stretched a little further?

$$
\begin{gathered}
d U^{*}=\delta d P \\
\delta=\frac{d U^{*}}{d P}
\end{gathered}
$$

Recall, for linear elastic material

$$
\delta=\frac{d U}{d P}
$$

Castigliano's Theorem:
Express complementary energy in terms of the loads
Add up all the complementary energy stroed in all the pieces
Find displacement of given point from derivative of U^{*} with respect to P at that point in that direction

Example: Linear Spring

$$
U^{*}=\int \delta d P=\int \frac{P}{k} d P=\frac{P^{2}}{2 k}=\frac{k^{2} \delta^{2}}{2 k}=\frac{1}{2} k \delta^{2}
$$

Example: Springs in series

$$
\begin{gathered}
F_{1}=F_{2}=P \\
U=\sum_{i} U_{i}=\frac{F_{1}^{2}}{2 k_{1}}+\frac{F_{2}^{2}}{2 k_{2}}=\frac{P^{2}}{2 k_{1}}+\frac{P^{2}}{2 k_{2}}
\end{gathered}
$$

Use Castigliano's Theorem

$$
\delta=\frac{U^{*}}{d P}=\frac{P}{k_{1}}+\frac{P}{k_{2}}
$$

Find δ_{1} using Castigliano's Theorem
Put a fictitous P_{f} to coinside with δ_{1}

$$
\begin{gathered}
\sum F_{x}=0 \\
-F_{1}+P_{f}+P=0 \Rightarrow F_{1}=P_{f}+P \\
-F_{2}+P=0 \Rightarrow F_{2}=P \\
U=\frac{F_{1}^{2}}{2 k_{1}}+\frac{F_{2}^{2}}{2 k_{2}}=\frac{\left(P_{f}+P\right)^{2}}{2 k_{1}}+\frac{P^{2}}{2 k_{2}} \\
\delta_{1}=\frac{\partial U}{\partial P_{f}}=\frac{P_{f}+P}{k_{1}}
\end{gathered}
$$

Recall $P_{f}=0$, so:

$$
\begin{gathered}
\delta_{1}=\frac{P}{k_{1}} \\
\delta=\frac{d U}{d P}=\frac{P_{f}+P}{k_{1}}+\frac{P}{k_{2}} \\
P_{f}=0
\end{gathered}
$$

So:

$$
\delta=\frac{P}{k_{1}}+\frac{P}{k_{2}}
$$

Note: This was done without doing compatibility explicitly. Example Truss

$$
U=\sum_{i} U_{i}=\frac{F_{A B}^{2}}{2 k_{A B}}+\frac{F_{B C}^{2}}{2 k_{B C}}
$$

Equilibrium of B

$$
\begin{gathered}
\sum F_{x}=0 \\
F_{A B}-F_{B C} \sin \theta=0 \\
\sum F_{y}=0 \\
-P-F_{B C} \cos \theta=0 \\
P=-F_{B C} \cos \theta \\
F_{B C}=\frac{-P}{\cos \theta} \\
F_{A B}=P \tan \theta
\end{gathered}
$$

$$
\begin{gathered}
U=\frac{(P \tan \theta)^{2}}{2 k_{A B}}+\left(\frac{P}{\cos \theta}\right)^{2} \frac{1}{2 k_{B C}} \\
-u_{y}^{B}=\frac{d U}{d P}=\frac{P \tan ^{2} \theta}{k_{A B}}+\frac{P}{\cos ^{2} \theta k_{B C}}
\end{gathered}
$$

Strain Energy Density

$$
\begin{aligned}
W & =\int F d \delta \\
u & =\int \sigma d \epsilon
\end{aligned}
$$

This is useful in beam bending.

Stored Energy in A Beaam $\left(\sigma_{x x}, \epsilon_{x x}\right)$

Total Energy Stored

$$
U=\int_{V} d V \int_{0}^{\epsilon} \sigma_{x x} d \epsilon_{x x}
$$

Recall:
For a beam:

$$
\sigma_{x x}=E \epsilon_{x x}
$$

For one material:

$$
\sigma_{x x}=\frac{-M y}{I}
$$

Beam:

$$
\begin{aligned}
U & =\int_{V} d V \int_{\epsilon} \sigma_{x x} d \epsilon_{x x} \\
& =\int_{V} d V \int_{0}^{\sigma_{x x}} \frac{\sigma_{x x} d \sigma_{x x}}{E} \\
& =\int_{V} d V \frac{\sigma_{x x}^{2}}{2 E}
\end{aligned}
$$

For one material:

$$
U=\int_{V} \frac{M(x)^{2}}{2 E I^{2}} y^{2} d V
$$

So:

$$
U=\frac{1}{2 E I} \int_{a} M(x)^{2} d x \text { For special case of one material beam. }
$$

Example:

$$
\begin{gathered}
M(x)=-P(L-x) \\
U=\frac{1}{2 E I} \int_{0}^{L} P^{2}(L-x)^{2} d x=\frac{P^{2} L^{3}}{6 E I} \\
\delta_{t i p}=\frac{d U}{d P}=\frac{P L^{3}}{3 E I}
\end{gathered}
$$

