2.001 - MECHANICS AND MATERIALS I

Lecture \#3
9/13/2006
Prof. Carol Livermore
Recall from last time:

FBD:

Solve equations of motion.

$$
\begin{aligned}
\sum F_{x} & =0 \\
\sum F_{y} & =0 \\
\sum M_{A} & =0
\end{aligned}
$$

See 9/11/06 Notes.
Solution:

Draw each component separately.
FBD of Bar 1

$$
\begin{gathered}
\sum F_{x}=0 \\
F_{A_{x}}+F_{C_{x}}=0 \\
\sum F_{y}=0 \\
F_{A_{y}}+F_{C_{y}}=0 \\
\sum M_{A}=0 \\
l \cos \theta F_{C_{y}}-l \sin \theta F_{C_{x}}=0
\end{gathered}
$$

Solve.

$$
\begin{gathered}
F_{A_{x}}=F_{C_{x}} \\
F_{A_{y}}=-F_{C_{y}} \\
\frac{F_{C_{y}}}{F_{C_{x}}}=\frac{\sin \theta}{\cos \theta}=\tan \theta \text { Forces track with angle. }
\end{gathered}
$$

Two Force Member:
If forces are only applied at 2 points, then:

1. Forces are equal and opposite.
2. Forces are aligned (colinear) with the vector tha connects the two points of application of forces.

So the FBD could be rewritten as:

Now look at the FBDs of 1,2 , and C:

Solve equations of equilibrium for Pin C .

$$
\begin{gathered}
\sum F_{x}=0 \\
P+F_{2} \sin \phi-F_{1} \sin \phi=0 \\
\sum F_{y}=0 \\
-F_{2} \cos \phi-F_{1} \cos \phi=0 \Rightarrow F_{1}=-F_{2} \\
\sum M=0 \Rightarrow \text { No additional info. }(\vec{\Gamma}=0) \\
P+2 F_{2} \sin \phi=0
\end{gathered}
$$

Note $\phi=30^{\circ}$, so:

$$
\begin{gathered}
F_{2}=-P \\
F_{1}=P
\end{gathered}
$$

Now look at FBD of 1,2 , and A:

Look at equilibrium of Pin A:

$$
\begin{gathered}
\sum F_{X}=0 \\
P \cos \theta+F_{3}=0 \\
F_{3}=-P \cos \theta
\end{gathered}
$$

Note $\theta=60^{\circ}$, so:

$$
F_{3}=-\frac{P}{2}
$$

So:

EXAMPLE:

Q: What are the reactions at the supports?
FBD:

$$
\begin{gathered}
\sum F_{x}=0 \\
R_{A_{x}}+R_{D_{x}}=0 \\
\sum F_{y}=0 \\
R_{A_{y}}+R_{D_{y}}-P=0 \\
\sum M_{A}=0 \\
-2 d P+d R_{D_{x}}=0
\end{gathered}
$$

Solve.

$$
\begin{gathered}
R_{D_{x}}=2 P \\
R_{A_{x}}=-2 P \\
R_{A_{y}}+R_{D_{y}}=P
\end{gathered}
$$

Note: BD is a 2-Force member.
Draw FBD of BD and Pin D.

Solve for Pin D.

$$
\begin{gathered}
\sum F_{x}=0 \\
2 P+F_{B D} \cos \theta=0 \\
\sum F_{y}=0 \\
R_{D_{y}}+F_{B D} \sin \theta=0
\end{gathered}
$$

Solve.

$$
\begin{gathered}
F_{B D}=-\frac{2 P}{\cos \theta} \\
R_{D_{y}}-\frac{2 P}{\cos \theta} \sin \theta=0 \\
R_{D_{y}}=2 P \tan \theta
\end{gathered}
$$

Note: $\theta=45^{\circ}$, so:

$$
R_{D_{y}}=2 P
$$

Substituting:

$$
\begin{gathered}
R_{A_{y}}+2 P-P=0 \\
R_{A_{y}}=-P
\end{gathered}
$$

Check:

Statically Determinate: A situation in which the equations of equilibrium determine the forces and moments that support the structure.

EXAMPLE:

FBD

$$
\begin{gathered}
\sum F_{x}=0 \\
R_{A_{x}}=0 \\
\sum F_{y}=0 \\
R_{A_{y}}+R_{B_{y}}-P=0 \\
\sum M_{B}=0 \\
-a R_{A_{y}}+M_{A}-(l-a) P=0
\end{gathered}
$$

Note: 4 unknowns and 3 equations.
This is statically indeterminate.

