Lecture \#4
9/18/2006
Prof. Carol Livermore
TOPIC: FRICTION

EXAMPLE: Box on floor

$\mu_{s}=$ Coefficient of Static Friction
FBD

Equation of equilibrium

$$
\begin{gathered}
\sum F_{y}=0 \\
N-W=0 \\
N=W \\
\sum F_{x}=0
\end{gathered}
$$

$$
\begin{gathered}
T-F=0 \\
T=F
\end{gathered}
$$

At impending motion only:

$$
F=\mu_{s} N
$$

For well lubricated, $\mu_{s} \approx 0.05$.
For very clean surfaces $\mu_{s} \approx 0.4-1$.
After it starts to move:

$$
F=\mu_{k} N
$$

$\mu_{k}=$ Coefficient of kinetic friction.

$$
\mu_{k}<\mu_{s}
$$

EXAMPLE: Block on an inclined plane

Q: At what angle (α) does the block slide down the plane?
FBD:

Equilibrium

$$
\begin{gathered}
\sum F_{x}=0 \\
F-W \sin \alpha=0 \Rightarrow F=W \sin \alpha \\
\sum F_{y}=0 \\
N-W \cos \alpha=0 \Rightarrow N=W \cos \alpha
\end{gathered}
$$

So:

$$
\frac{F}{N}=\tan \alpha
$$

When you have impending motion:

$$
\begin{aligned}
F & =\mu_{s} N \\
\mu_{s} & =\tan \alpha
\end{aligned}
$$

What about where these forces act?

$$
\begin{gathered}
\sum M_{0}=0 \\
\frac{F L_{2}}{2}-N_{a}=0 \\
a=\frac{F L_{2}}{2 N}=\frac{L_{2}}{2} \tan \alpha
\end{gathered}
$$

So:

So:

$$
a=\frac{L_{2}}{2} \tan \alpha
$$

The resultant of the normal force and frictional force act directly "below" the center of mass.

EXAMPLE

Q: For what range of W_{0} is the block in equilibrium?

FBD
Case 1: Impending motion is down the plane.

$$
\begin{gathered}
\sum F_{y}=0 \\
N_{1}-W \cos \alpha=0
\end{gathered}
$$

Case 2: Impending motion is up the plane.

What about T ?
FBD of Cable

Look at differential element

$$
\begin{gathered}
F_{x}=0 \\
T(\theta) \cos \left(\frac{d \theta}{2}\right)-T(\theta+d \theta) \cos \left(\frac{d \theta}{2}\right)=0 \\
T(\theta)=T(\theta+d \theta)=T \\
F_{y}=0 \\
d N-T(\theta) \sin \left(\frac{d \theta}{2}\right)-T(\theta+d \theta) \sin \left(\frac{d \theta}{2}\right)=0 \\
d N-T(\theta) \frac{d \theta}{2}-T(\theta+d \theta) \frac{d \theta}{2}=0 \\
T d \theta=d N
\end{gathered}
$$

So:

$$
T=W_{0}
$$

Back to block:

$$
\begin{gathered}
T_{1}=T_{2}=W_{0} \\
N_{1}=N_{2}=N=W \cos \alpha
\end{gathered}
$$

For case 1:

$$
\begin{gathered}
F_{1}=\mu_{s} N=\mu_{s} W \cos \alpha \\
\mu_{s} W \cos \alpha+W_{0}+W \sin \alpha=0 \\
W_{0}=W \sin \alpha-\mu_{s} W \cos \alpha
\end{gathered}
$$

The block will be stable against downward motion when:

$$
W_{0}=W \sin \alpha-\mu_{s} W \cos \alpha
$$

For case 2:

$$
\begin{gathered}
F_{2}=\mu_{s} N=\mu_{s} W \cos \alpha \\
\mu_{s} W \cos \alpha+W_{0}+W \sin \alpha=0 \\
W_{0}=W \sin \alpha-\mu_{s} W \cos \alpha
\end{gathered}
$$

The block will be stable against downward motion when:

$$
W_{0} \leq W \sin \alpha+\mu_{s} W \cos \alpha
$$

So it is stable when:

$$
W\left(\sin \alpha-\mu_{s} \cos \alpha\right) \leq W_{0} \leq W\left(\sin \alpha+\mu_{s} \cos \alpha\right)
$$

What about pulley with friction?
Recall a rope around a rod.

Look at a differential element.

$\sum F_{x}=0$
$T(\theta) \cos \left(\frac{d \theta}{2}\right)-T(\theta+d \theta) \cos \left(\frac{d \theta}{2}\right)-d F=0$
$\sum F_{y}=0$
$d N-T(\theta) \sin \left(\frac{d \theta}{2}\right)-T(\theta+d \theta) \sin \left(\frac{d \theta}{2}\right)-d F=0$
$\sin \left(\frac{d \theta}{2}\right) \approx \frac{d \theta}{2}$
$\cos \left(\frac{d \theta}{2}\right) \approx 1$

$$
d T=T(\theta+d \theta)-T(\theta) \Rightarrow T(\theta+d \theta)=T(\theta)+d T=T+d T
$$

So:

$$
\begin{gathered}
T(\theta)-T(\theta+d \theta)-d F=0 \\
d T=-d F \\
d N-\frac{T d \theta}{2}+(T+d T) \frac{d \theta}{2}=0 \\
T+d T \rightarrow 0 \\
d N-T d \theta=0
\end{gathered}
$$

With impending motion:

$$
\begin{gathered}
d F=\mu_{s} d N \\
d T=-\mu_{s} d N
\end{gathered}
$$

$$
d N=-\frac{d T}{\mu_{s}}
$$

Substitute:

$$
-\frac{d T}{\mu_{s}}-T d \theta=0
$$

Thus:

$$
\frac{d T}{T}=-\mu_{s} d \theta
$$

Integrate:

$$
\begin{gathered}
\int_{T_{1}}^{T_{2}} \frac{d T}{T}=\int_{0}^{\phi}-\mu_{s} d \theta \\
{[\ln T]_{T_{1}}^{T_{2}}=-\mu_{s} \phi} \\
\ln \left(\frac{T_{2}}{T_{1}}\right)=-\mu_{s} \phi \\
\frac{T_{2}}{T_{1}}=\exp \left(-\mu_{s} \phi\right) \\
T_{2}=T_{1} \exp \left(-\mu_{s} \phi\right)
\end{gathered}
$$

This is known as the capstan effect.
EXAMPLE: Boat on a dock

$$
\begin{gathered}
\phi=3(2 \pi) \approx 20 \\
\mu_{s}=0.4 \\
T_{2}=T_{1} \exp (-8) \\
T_{2} \approx\left(\frac{1}{3000}\right) T_{1}
\end{gathered}
$$

