2.001 - MECHANICS AND MATERIALS I<br>Lecture \#6<br>9/27/2006<br>Prof. Carol Livermore

Recall:


Sign Convention


Positive internal forces and moments shown.

Distributed Loads


$$
\begin{gathered}
q(x)=q_{0} \\
F_{\text {Total Loading }}=\int_{0}^{L} q(x) d x=\left[q_{0} x\right]_{0}^{L}=q_{0} L \\
M_{A_{\text {Distributed Load }}}=\int_{0}^{L} q(x) x d x=\left[\frac{q_{0} x^{2}}{2}\right]_{0}^{L}=\frac{q_{0} L^{2}}{2}
\end{gathered}
$$

Lump: (Equivalent Forces)


ABD


$$
\begin{gathered}
\sum F_{x}=0 \\
R_{A_{x}}=0 \\
\sum F_{y}=0 \\
R_{A_{y}}+R_{B_{y}}-q_{0} L=0 \\
\sum M_{A}=0 \\
-\frac{L}{2} q_{0} L+R_{B_{y}} L=0 \\
R_{B_{y}}=\frac{q_{0} L}{2}
\end{gathered}
$$

Substitute:

$$
\begin{gathered}
R_{A_{y}}+\frac{q_{0} L}{2}-q_{0} L=0 \\
R_{A_{y}}=\frac{q_{o} L}{2}
\end{gathered}
$$



Cut beam.


Lump:


$$
\begin{gathered}
\sum F_{x}=0 \\
N=0 \\
\sum F_{y}=0 \\
\frac{q_{0} L}{2}-q_{0} x-V_{y}=0 \Rightarrow V_{y} q_{0}\left(\frac{L}{2}-x\right) \\
\sum M_{*}=0 \\
-\frac{q_{0} L}{2} x+q_{0} x\left(\frac{x}{2}\right)+M_{z}=0 \\
M_{z}=q_{0}\left(\frac{L}{2} x-\frac{x^{2}}{2}\right)
\end{gathered}
$$

Plot


## Sanity Check

Pinned and Pinned on rollers at end
Cannot support moment $M$ at ends Can support x and y loads $\Rightarrow$ OK


$$
\begin{gathered}
V_{y}-\left(V_{y}+\delta V_{y}\right)+q \delta x=0 \\
\delta V_{y}=q \delta x
\end{gathered}
$$

Limit as $\delta x \rightarrow 0 \Rightarrow \frac{q d V_{y}}{d x}$

$$
\begin{gathered}
\sum M_{0}=0 \\
-M_{z}+M_{z}+\delta M_{z}-V_{y}\left(\frac{\delta x}{2}\right)-\left(V_{y}+\delta V_{y}\right)\left(\frac{\delta x}{2}\right)=0 \\
\delta M_{z}-2 V_{y} \frac{\delta x}{2}-\delta V_{y} \frac{\delta x}{2} \\
\delta M_{z}=V_{y} \delta x-\delta V_{y} \frac{\delta x}{2} \\
V_{y}=\frac{\delta M_{z}}{\delta x}+\frac{\delta V_{y}}{2}
\end{gathered}
$$

Take limit $\delta x \rightarrow 0$

$$
\begin{aligned}
V_{y} & =\frac{d M_{z}}{d x} \\
q & =\frac{d V_{y}}{d x}
\end{aligned}
$$

But what if load is not uniformly distributed?


EXAMPLE: A more interesting structure


Q: Find all internal forces and moments in all members. Plot.
Find reactions at supports.
FBD


$$
\begin{gathered}
\sum F_{x}=0 \\
R_{A_{x}}+R_{D_{x}}=0 \\
\sum F_{y}=0 \\
R_{A_{y}}+R_{D_{y}}=0 \\
\sum M_{A}=0 \\
M-R_{D_{x}} L+R_{D_{y}} L=0
\end{gathered}
$$

ABD


This is a 2-force member.

$$
\begin{gathered}
\frac{R_{A_{y}}}{R_{A_{x}}}=\tan \theta=\frac{\frac{L}{2}}{L}=\frac{1}{2} \\
R_{A_{x}}=2 R_{A_{y}} \Rightarrow \frac{R_{A_{x}}}{R_{A_{y}}}=2 \\
\frac{R_{A_{x}}}{R_{D_{x}}}=-1 \\
\frac{R_{A_{y}}}{R_{D_{y}}}=-1 \\
\frac{R_{A_{x}}}{R_{D_{x}}}=\frac{R_{A_{y}}}{R_{D_{y}}} \\
\frac{R_{A_{x}}}{R_{A_{y}}}=\frac{R_{D_{x}}}{R_{D_{y}}}
\end{gathered}
$$

So:

$$
\frac{R_{A_{x}}}{R_{D_{y}}}=2 \Rightarrow R_{D_{x}}=2 R_{D_{y}}
$$

So:

$$
\begin{gathered}
R_{D_{y}}=\frac{M}{L} \\
R_{A_{y}}=-\frac{M}{L} \\
R_{D_{x}}=\frac{2 M}{L} \\
R_{A_{x}}=\frac{-2 M}{L} \\
\sum F_{x}=0 \\
R_{A_{x}}-R_{C_{x}}=0 \\
R_{C_{x}}=\frac{-2 M}{L} \\
\sum F_{y}=0 \\
R_{A_{y}}-R_{C_{y}}=0 \\
R_{C_{y}}=\frac{-M}{L}
\end{gathered}
$$



Take cut
FBD


$$
\begin{gathered}
\sum F_{x}=0 \\
N-\frac{2 M}{L}=0 \\
N=\frac{2 M}{L} \\
\sum F_{y}=0 \\
-\frac{M}{L}-V_{y}=0 \\
V_{y}=\frac{-M}{L} \\
\sum M_{*}=0 \\
\frac{M}{L} x+M_{z}=0 \\
M_{z}=\frac{-M}{L} x
\end{gathered}
$$

FBD of Cut 2


$$
\begin{gathered}
\sum F_{x}=0 \\
-\frac{M}{L}+N=0 \\
N=\frac{M}{L} \\
\sum F_{y}=0 \\
\frac{2 M}{L}-V_{y}=0 \\
V_{y}=\frac{2 M}{L} \\
\sum M_{*}=0 \\
M_{z}+\frac{M}{L} x-\frac{2 M}{L} x=0 \\
M_{z}=-M\left(1-\frac{2 x}{L}\right)
\end{gathered}
$$

FBD of Cut 3


$$
\begin{gathered}
\sum F_{x}=0 \\
-\frac{M}{L}+N=0 \\
N=\frac{M}{L} \\
\sum F_{y}=0 \\
\frac{2 M}{L}-V_{y}=0
\end{gathered}
$$

$$
\begin{gathered}
V_{y}=\frac{2 M}{L} \\
\sum M_{*}=0 \\
M_{z}+\frac{2 M}{L} x=0 \\
M_{z}=\frac{2 M}{L} x
\end{gathered}
$$

FBD of Cut 4



Mbie: Xis osfineo ALONG TIFE BEAMS.






