2.001 - MECHANICS AND MATERIALS I

Lecture \#7
10/2/2006
Prof. Carol Livermore
Recall: 3 Basic Ingredients

1. Forces, Moments, and Equilibrium
2. Displacements, Deformations, and Compatibility
3. Forces-Deformation Relationships

Linear Elastic Springs

Linear: k is a constant \rightarrow not a function of P or δ. If it were non-linear:

Elastic: Loading and unloading are along the same curve.

EXAMPLE: Springs in series

Q: What are the reactions at the supports? Q: How are P and δ related?

FBD

$$
\begin{gathered}
\sum F_{x}=0 \\
R_{A_{x}}+P=0 \\
R_{A_{x}}=-P \\
\sum F_{y}=0 \\
R_{y}=0
\end{gathered}
$$

FBD of Spring 1

$$
\begin{gathered}
\sum F_{x}=0 \\
F_{1}=P
\end{gathered}
$$

FBD of Spring 2

$$
\begin{gathered}
\sum_{F_{2}=P} F_{x}=0 \\
\hline
\end{gathered}
$$

Look at compatibility:

Undeformed

Deformed

Compatibility:

$$
\delta_{1}+\delta_{2}=\delta
$$

Define:
δ - How much things stretch u - How much things move

So:

$$
u_{x}=\delta
$$

Force-Deformation:

$$
\begin{aligned}
& F_{1}=k_{1} \delta_{1} \\
& F_{2}=k_{2} \delta_{2}
\end{aligned}
$$

Put it all together:

$$
\begin{gathered}
\delta_{1}=F_{1} / k_{1} \\
\delta_{2}=F_{2} / k_{2} \\
\delta=\delta_{1}+\delta_{2}=\frac{F_{1}}{k_{1}}+\frac{F_{2}}{k_{2}}=P\left(\frac{1}{k_{1}}+\frac{1}{k_{2}}\right)
\end{gathered}
$$

So:

$$
\delta=P\left(\frac{k_{2}+k_{1}}{k_{2} k_{1}}\right)
$$

$$
\begin{gathered}
P=\frac{k_{1} k_{2}}{k_{1}+k_{2}} \delta \\
k_{e f f}=\frac{k_{1} k_{2}}{k_{1}+k_{2}}
\end{gathered}
$$

Plot

Sanity Check

1. $k_{1}=k_{2}=k$
$k_{\text {eff }}=\frac{k^{2}}{2 k}=\frac{k}{2}, P \Rightarrow 2 \times \delta$
2. $k_{1} \gg k_{2}$
$k_{e f f}=\frac{k_{2}}{1+\frac{k_{2}}{k_{1}}} \approx k_{2} \Rightarrow$ All flexibility is due to weaker spring.
EXAMPLE

Q: How far does C displace?
Q: What are the forces in the spring?

1. FBD

Note: No forces in y.

$$
\begin{gathered}
\sum F_{x}=0 \\
P+R_{A_{x}}+R_{B_{x}}=0
\end{gathered}
$$

FBD: Spring 1

$$
\begin{gathered}
R_{A_{x}}+F_{1 c}=0 \\
F_{1 c}=-R_{A_{x}}
\end{gathered}
$$

FBD: Pin

$$
P-F_{1 c}+F_{2 c}=0
$$

FBD: Spring 2

$$
\begin{gathered}
R_{B_{x}}-F_{2 c}=0 \\
F_{2 c}=R_{B_{x}}
\end{gathered}
$$

So:

$$
P+R_{A_{x}}+R_{B_{x}}=0
$$

Note: We already have this equation.
We need more than just equilibrium!
We cannot find the reactions at the supports using equilibrium alone. This is statically indeterminate.

Test for Static Indeterminancy
\# Unknowns
\# Equations of Equilibrium
If \#Unknowns > \#Equations \Rightarrow Static Indeterminancy.
2. Let's try Force Deformation relationships.
$F_{1}=k_{1} \delta_{1}$
$F_{2}=k_{2} \delta_{2}$

3. Now add compatibility.

$$
\begin{gathered}
\delta_{1}+\delta_{2}=0 \\
\delta_{1}=u_{x}^{c} \\
\delta_{2}=-u_{x}^{c}
\end{gathered}
$$

4. Solve equations.

$$
\begin{gathered}
F_{1}=k_{1} \delta_{1}=k_{1} u_{x}^{c} \\
F_{2}=k_{2} \delta_{2}=-k_{2} u_{x}^{c} \\
P-k_{2} u_{x}^{c}-k_{1} u_{x}^{c}=0 \\
P=\left(k_{1}+k_{2}\right) u_{x}^{c} \\
u_{x}^{c}=\frac{P}{k_{1}+k_{2}}
\end{gathered}
$$

What is the loadsharing?

$$
\begin{aligned}
F_{1} & =\frac{k_{1} P}{k_{1}+k_{2}} \\
F_{2} & =-\frac{k_{2} P}{k_{1}+k_{2}}
\end{aligned}
$$

Check

EXAMPLE

Q: Forces in springs A, B, C?
Q: Find $y(x)$.
Assumes small deformations.

Is this statically indeterminate?
What are the unconstrained degrees of freedom (D.O.F)?

1. Vertical displacements $\Rightarrow \sum F_{y}=0$
2. Rotation about $\mathrm{z} \Rightarrow \sum M_{z}=0$

What are the unknowns?
$F_{A}, F_{B}, F_{C} \Rightarrow 3$ Unknowns.
\#Unknowns $>$ \#Equations \Rightarrow This is statically indeterminate.

1. Equations of Equilibrium

$$
\begin{gathered}
\sum M_{A}=0 \\
P a-F_{C} \frac{L}{2}-F_{B} L=0
\end{gathered}
$$

2. Force Deformation Relationship

$$
\begin{aligned}
& F_{A}=k \delta_{A} \\
& F_{B}=k \delta_{B} \\
& F_{C}=k \delta_{C}
\end{aligned}
$$

3. Compatibility

$$
\begin{aligned}
& \delta_{A}=u_{Y}^{A} \\
& \tan \varphi=\frac{\delta_{B}-\delta_{A}}{L} \quad \Rightarrow L \tan \varphi_{t}=\delta_{A}-\delta_{A} \Rightarrow \delta_{s}=\delta_{A}+\tan \varphi_{t}=u_{y}+L \tan \varphi_{z} \\
& \tan \varphi=\frac{\delta_{C}-\delta_{A}}{L / 2} \Rightarrow \frac{L}{2} \tan \varphi_{z}=\Rightarrow \delta_{c}=u_{s}^{A}+\frac{L}{2} \tan \varphi_{z}
\end{aligned}
$$

