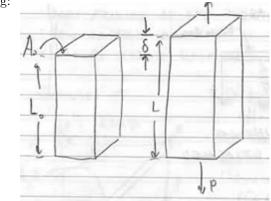
2.001 - MECHANICS AND MATERIALS I Lecture #910/11/2006 Prof. Carol Livermore

Review of Uniaxial Loading:



 δ = Change in length (Positive for extension; also called tension)

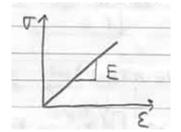
Stress (σ)

$$\sigma = P/A_0$$

Strain (ϵ) at a point

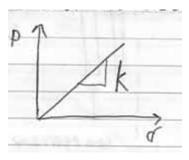
$$\epsilon = \frac{L - L_0}{L_0} = \frac{\delta}{L_0}$$

Stress-Strain Relationship \Rightarrow Material Behavior



 $\sigma = E\epsilon$

Force-Displacement Relationship



$$P = k\delta$$

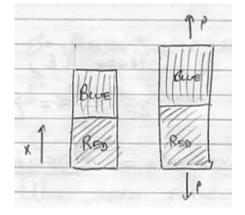
For a uniaxial force in a bar:

$$k = \frac{EA_0}{L_0}$$

Deformation and Displacement Recall from Lab:

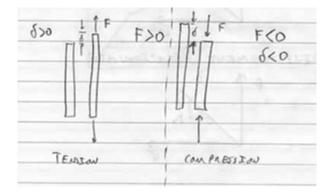
The springs deform. The bar is displaced.

EXAMPLE:



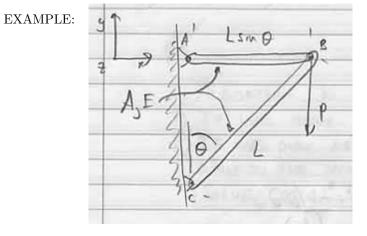
$$\epsilon(x) = \frac{du(x)}{dx}$$
$$\int \epsilon(x) dx = \int du$$

Sign Convention



Trusses that deform

Bars pinned at the joints How do bars deform? How do joints displace?



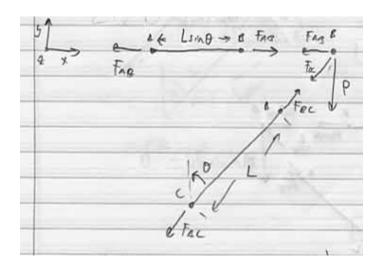
Q: Forces in bars? How much does each bar deform? How much does point B displace?

Unconstrained degrees of freedom 1. u_x^B 2. u_y^B

Unknowns

- 1. F_{AB} 2. F_{BC}

This is statically determinate (Forces can be found using equilibrium) FBD:



$$\sum F_x = 0 \text{ at Pin B}$$
$$-F_{AB} - F_{BC} \sin \theta = 0$$
$$\sum F_y = 0$$
$$-P - F_{BC} \cos \theta = 0 \Rightarrow F_{BC} = \frac{-P}{\cos \theta}$$
$$-F_{AB} + \frac{P}{\cos \theta} \sin \theta = 0$$

So:

 $F_{AB} = P \tan \theta$

Force-Deformation Relationship

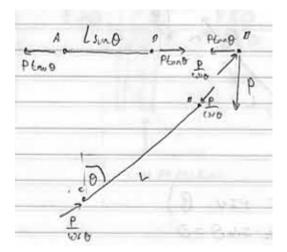
$$P = k\delta$$
$$k = \frac{EA}{L}$$
$$\delta_{AB} = \frac{F_{AB}}{k_{AB}}$$
$$\delta_{BC} = \frac{F_{BC}}{k_{BC}}$$

$$k_{AB} = \frac{AE}{L\sin\theta}$$
$$k_{BC} = \frac{AE}{L}$$

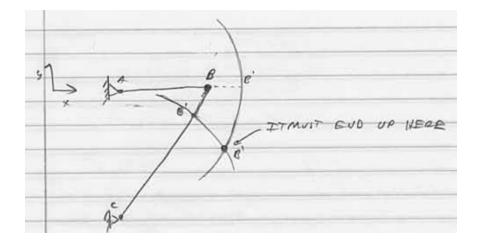
So:

$$\delta_{AB} = \frac{P \tan \theta}{\left(\frac{AE}{L \sin \theta}\right)}$$
$$\delta_{BC} = \frac{-P \cos \theta}{\left(\frac{AE}{L}\right)}$$
$$\delta_{AB} = \frac{PL \sin \theta \tan \theta}{AE}$$
$$\delta_{BC} = \frac{-PL}{AE \cos \theta}$$

Check:

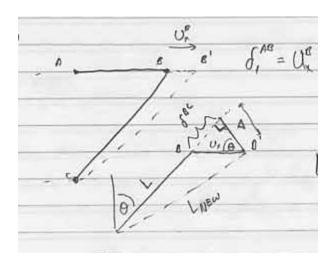


Compatibility



Augorithm to find B'1. If we only have u_x^B , what δ^{AB} and δ^{BC} would result? 2. If we only have u_y^B , what δ^{AB} and δ^{BC} would result? 3. What is the total δ^{AB} and δ^{BC} is I have both u_x^B and u_y^B ? for u_x^B and u_y^B from known δ^{AB} and δ^{BC} . Step 1

4. Solve



$$\delta^{BC} = u_r^B \sin \theta$$

$$L_{NEW} = \sqrt{(L + \delta_1^{BC})^2 + \Delta^2}$$

$$= L\sqrt{\left(1 + \frac{2\delta_1^{BC}}{L} + \frac{\delta_1^{BC^2}}{L^2}\right) + \frac{\Delta^2}{L^2}}$$

$$\sqrt{1+x} \approx 1 + \frac{x}{L}$$

$$L_{NEW} = L\left(1 + \frac{\delta_1^{BC}}{L} + \frac{\delta_1^{BC^2}}{2L^2} + \frac{\Delta^2}{2L^2}\right)$$

$$\frac{\delta_1^{BC^2}}{2L^2} \to 0$$

$$\frac{\Delta^2}{2L^2} \to 0$$

For $\delta << L$:

$$\delta^{BC}\approx D$$

So:

$$L_{new} = L + \delta_1^{BC}$$