2.001 - MECHANICS AND MATERIALS I

Lecture \#9 10/11/2006
Prof. Carol Livermore
Review of Uniaxial Loading:

$\delta=$ Change in length (Positive for extension; also called tension)
Stress (σ)

$$
\sigma=P / A_{0}
$$

Strain (ϵ) at a point

$$
\epsilon=\frac{L-L_{0}}{L_{0}}=\frac{\delta}{L_{0}}
$$

Stress-Strain Relationship \Rightarrow Material Behavior

$$
\sigma=E \epsilon
$$

$$
P=k \delta
$$

For a uniaxial force in a bar:

$$
k=\frac{E A_{0}}{L_{0}}
$$

Deformation and Displacement
Recall from Lab:

The springs deform.
The bar is displaced.
EXAMPLE:

$$
\begin{gathered}
\epsilon(x)=\frac{d u(x)}{d x} \\
\int \epsilon(x) d x=\int d u
\end{gathered}
$$

Sign Convention

Trusses that deform
Bars pinned at the joints
How do bars deform?
How do joints displace?
EXAMPLE:

Q: Forces in bars? How much does each bar deform? How much does point B displace?
Unconstrained degrees of freedom

1. u_{x}^{B}
2. u_{y}^{B}

Unknowns

1. $F_{A B}$
2. $F_{B C}$

This is statically determinate (Forces can be found using equilibrium) FBD:

$$
\begin{gathered}
\sum F_{x}=0 \text { at Pin B } \\
-F_{A B}-F_{B C} \sin \theta=0 \\
\sum F_{y}=0 \\
-P-F_{B C} \cos \theta=0 \Rightarrow F_{B C}=\frac{-P}{\cos \theta} \\
-F_{A B}+\frac{P}{\cos \theta} \sin \theta=0
\end{gathered}
$$

So:

$$
F_{A B}=P \tan \theta
$$

Force-Deformation Relationship

$$
\begin{gathered}
P=k \delta \\
k=\frac{E A}{L} \\
\delta_{A B}=\frac{F_{A B}}{k_{A B}} \\
\delta_{B C}=\frac{F_{B C}}{k_{B C}}
\end{gathered}
$$

$$
\begin{gathered}
k_{A B}=\frac{A E}{L \sin \theta} \\
k_{B C}=\frac{A E}{L}
\end{gathered}
$$

So:

$$
\begin{gathered}
\delta_{A B}=\frac{P \tan \theta}{\left(\frac{A E}{L \sin \theta}\right)} \\
\delta_{B C}=\frac{-P \cos \theta}{\left(\frac{A E}{L}\right)} \\
\delta_{A B}=\frac{P L \sin \theta \tan \theta}{A E} \\
\delta_{B C}=\frac{-P L}{A E \cos \theta}
\end{gathered}
$$

Check:

Compatibility

Algorithm to find B^{\prime}

1. If we only have u_{x}^{B}, what $\delta^{A B}$ and $\delta^{B C}$ would result?
2. If we only have u_{y}^{B}, what $\delta^{A B}$ and $\delta^{B C}$ would result?
3. What is the total $\delta^{A B}$ and $\delta^{B C}$ is I have both u_{x}^{B} and u_{y}^{B} ?
4. Solve for u_{x}^{B} and u_{y}^{B} from known $\delta^{A B}$ and $\delta^{B C}$.
Step 1

$$
\begin{gathered}
\delta^{B C}=u_{x}^{B} \sin \theta \\
L_{N E W}=\sqrt{\left(L+\delta_{1}^{B C}\right)^{2}+\Delta^{2}} \\
=L \sqrt{\left(1+\frac{2 \delta_{1}^{B C}}{L}+\frac{\delta_{1}^{B C^{2}}}{L^{2}}\right)+\frac{\Delta^{2}}{L^{2}}} \\
\sqrt{1+x} \approx 1+\frac{x}{L} \\
L_{N E W}=L\left(1+\frac{\delta_{1}^{B} C}{L}+\frac{\delta_{1}^{B C^{2}}}{2 L^{2}}+\frac{\Delta^{2}}{2 L^{2}}\right) \\
\frac{\delta_{1}^{B C^{2}}}{2 L^{2}} \rightarrow 0 \\
\frac{\Delta^{2}}{2 L^{2}} \rightarrow 0
\end{gathered}
$$

For $\delta \ll L$:

$$
\delta^{B C} \approx D
$$

So:

$$
L_{n e w}=L+\delta_{1}^{B C}
$$

