MIT OpenCourseWare
http://ocw.mit.edu
2.004 Dynamics and Control II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.004 Dynamics and Control II

Spring Term 2008
Solution of Problem Set 7

Assigned: April 4, 2008
Due: April 11, 2008

Problem 1:

(a) The impedance graph below may be reduced to a single impedance as shown:

The required transfer function is

$$
G(s)=\frac{V(s)}{F(s}=Z_{e q}
$$

It is more convenient to work with admittances (since there are a lot of parallel elements):

$$
\begin{aligned}
Y_{e q} & =\frac{1}{Z_{e q}}=Y_{m_{1}}+Y_{B_{1}}+Y_{K_{1}}+\frac{\left(Y_{K_{2}}+Y_{B_{2}}\right) Y_{m_{2}}}{Y_{K_{2}}+Y_{B_{2}}+Y_{m_{2}}} \\
& =\frac{\left(Y_{m_{1}}+Y_{B_{1}}+Y_{K_{1}}\right)\left(Y_{K_{2}}+Y_{B_{2}}+Y_{m_{2}}\right)+\left(Y_{K_{2}}+Y_{B_{2}}\right) Y_{m_{2}}}{Y_{K_{2}}+Y_{B_{2}}+Y_{m_{2}}}
\end{aligned}
$$

Then

$$
\begin{aligned}
G(s) & =\frac{1}{Y_{e q}} \\
& =\frac{Y_{K_{2}}+Y_{B_{2}}+Y_{m_{2}}}{\left(Y_{m_{1}}+Y_{B_{1}}+Y_{K_{1}}\right)\left(Y_{K_{2}}+Y_{B_{2}}+Y_{m_{2}}\right)+\left(Y_{K_{2}}+Y_{B_{2}}\right) Y_{m_{2}}} \\
& =\frac{m_{2} s+B_{2}+K_{2} / s}{\left(m_{1} s+B_{1}+K_{1} / s\right)\left(K_{2} / s+B_{2}+m_{2} s\right)+\left(K_{2} / s+B_{2}\right) m_{2} s} \\
& =\frac{m_{2} s^{3}+B_{2} s^{2}+K_{2} s}{a_{4} s^{4}+a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}
\end{aligned}
$$

$$
\text { where } \begin{aligned}
a_{4} & =m_{1} m_{2} \\
a_{3} & =\left(m_{1}+m_{2}\right) B_{2}+m_{2} B_{1} \\
a_{2} & =\left(m_{1}+m_{2}\right) K_{2}+m_{2} K_{1}+B_{1} B_{2} \\
a_{1} & =K_{1} B_{2}+K_{2} B_{1} \\
a_{0} & =K_{1} K_{2}
\end{aligned}
$$

(b) Reduce the system graph to a reduced impedance graph as shown below:

where

$$
\begin{aligned}
& Y_{1}=\frac{1}{Z_{1}}=m_{1} s+B_{1}+\frac{K_{1}}{s} \\
& Y_{2}=\frac{1}{Z_{2}}=B_{2}+\frac{K_{2}}{s} \\
& Y_{3}=\frac{1}{Z_{3}}=m_{2} s
\end{aligned}
$$

Use node equations:

$$
\begin{array}{ll}
\text { At node (a) } & F_{Z_{1}}+F_{Z_{2}}=F_{a c t} \\
\text { At node }(\mathrm{b}) & F_{Z_{2}}-F_{Z_{3}}=F_{a c t}
\end{array}
$$

Substitute admittances

$$
\begin{aligned}
v_{a} Y_{1}+\left(v_{a}-v_{b}\right) Y_{2} & =F_{a c t} \\
\left(v_{a}-v_{b}\right) Y_{2}-v_{b} Y_{3} & =F_{a c t}
\end{aligned}
$$

and express in matrix form

$$
\left[\begin{array}{cc}
Y_{1}+Y_{2} & -Y_{2} \\
Y_{2} & -\left(Y_{2}+Y_{3}\right)
\end{array}\right]\left[\begin{array}{l}
v_{a} \\
v_{b}
\end{array}\right]=\left[\begin{array}{c}
F_{a c t} \\
F_{a c t}
\end{array}\right]
$$

Use Cramer's Rule to solve for v_{a} :

$$
\begin{aligned}
v_{a} & =\frac{\left|\begin{array}{cc}
F_{\text {act }} & -Y_{2} \\
F_{\text {act }} & -\left(Y_{2}+Y_{3}\right)
\end{array}\right|}{\left|\begin{array}{cc}
Y_{1}+Y_{2} & -Y_{2} \\
Y_{2} & -\left(Y_{2}+Y_{3}\right)
\end{array}\right|} \\
& =\frac{Y_{3} F_{a c t}}{Y_{1} Y_{2}+Y_{1} Y_{3}+Y_{2} Y_{3}}
\end{aligned}
$$

Substitution for the admittances gives

$$
\begin{aligned}
& G(s)=\frac{v_{a}(s)}{F_{a c t}(s)}=\frac{m_{2} s^{3}}{a_{4} s^{4}+a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}} \\
& \text { where } \quad \begin{array}{l}
a_{4}=m_{1} m_{2} \\
a_{3}=\left(m_{1}+m_{2}\right) B_{2}+m_{2} B_{1} \\
a_{2}=\left(m_{1}+m_{2}\right) K_{2}+m_{2} K_{1}+B_{1} B_{2} \\
a_{1}=K_{1} B_{2}+K_{2} B_{1} \\
a_{0}=K_{1} K_{2}
\end{array}
\end{aligned}
$$

and we note that the denominator is the same as in (a) above.

Problem 2: Nise Problem 4-23 (p. 207).

Solution text removed due to copyright restrictions.

Problem 3: Nise Problem 4-29 (p. 208).
Solution text removed due to copyright restrictions.

Problem 4: Nise Problem 4-55 (p. 212).

Solution text removed due to copyright restrictions.

Problem 5: Nise Problem 4-62 (p. 214).

Solution text removed due to copyright restrictions.

Both responses are indistinguishable.
Problem 6: Nise Problem 4-67 (p. 215).

Solution text removed due to copyright restrictions.

