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Solution of Problem Set 9 

Assigned: April 18, 2008 Due: April 25, 2008 

Problem 1: (Laboratory Preparation for week 2 of the project.) 

(a)	 (From the lab handout) For the transfer function relating the building motion to the 
actuator force: 
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Reduce the system graph to a reduced impedance graph as shown below: 
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where 

Y1 = 
1 

Z1 
= m1s + B1 + 

K1 

s 

Y2 = 
1 

Z2 
= B2 + 

K2 

s 

Y3 = 
1 

Z3 
= m2s 
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Use node equations: 

At node (a) FZ1 + FZ2 = Fact 

At node (b) FZ2 − FZ3 = Fact 

Substitute admittances 

vaY1 + (va − vb)Y2 = Fact 

(va − vb)Y2 − vbY3 = Fact 

and express in matrix form 

Y1 + Y2 −Y2 va Fact = 
Y2 −(Y2 + Y3) vb Fact 

Use Cramer’s Rule to solve for va: 

� Fact −Y2 
� 

� Fact	 −(Y2 + Y3) � 
va =	 � � 

� Y1 + Y2 −Y2 
� 

� Y2 −(Y2 + Y3) � 

Y3Fact 
= 

Y1Y2 + Y1Y3 + Y2Y3 

Now use Cramer’s Rule to solve for vb: 

� Y1 + Y2 Fact 
� 

� Y2 Fact 
� 

va =	 � � 

� Y1 + Y2 −Y2 
� 

� Y2 −(Y2 + Y3) � 

−Y1Fact 
= 

Y1Y2 + Y1Y3 + Y2Y3 

The relative velocity vrel = vm1 − vm2 = va − vb 

(Y3 + Y1)Fact 
vrel = 

Y1Y2 + Y1Y3 + Y2Y3 

Substitution for the admittances gives 

vrel(s) (m1 + m2)s
3 + B1s

2 + K1s 
G(s) = = 

Fact(s) a4s4 + a3s3 + a2s2 + a1s + a0 

where	 a4 = m1m2 

a3 = (m1 + m2)B2 + m2B1 

a2 = (m1 + m2)K2 + m2K1 + B1B2 

a1 = K1B2 + K2B1 

a0 = K1K2 
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(b) 1. If the actuator force is proportional to the relative velocity between the two masses, 
that is


Fact = Kp(vm1 − vm2 )


it will “look like” a damper with Bact = Kp. Therefore the effective damping 
between the two masses will be B2 + Kp. It is interesting to note that if Kp < 0 
the overall damping coefficient may be reduced. 

2. If integral action is used so that Fact = Kivrel/s then 

Fact = Ki(xm1 − xm2 ) 

so that the force is proportional to the relative displacement of the two masses. 
Thus the actuator has the same effect as a spring with stiffness K = Ki. This 
stiffness will act in parallel with the physical spring K2, producing a total stiffness 
K2 + Ki between the two masses. 

If PI feedback is used, the actuator will appear as a passive parallel spring and damper. This 
allows us to ”tune” the tuned-mass damper electronically and find an optimum set of values 
for B2 and K2 to meet some performance criterion. 

Problem 2: Nise Ch. 8, Problem 1 (p. 417 5th Ed.). 

(a) No: Not symmetric; On real axis to left of an even number of poles and zeros. 

(b) No: On real axis to left of an even number of poles and zeros. 

(c) No: On real axis to left of an even number of poles and zeros. 

(d) Yes. 

(e) No: Not symmetric; Not on real axis to left of odd number of poles and/or zeros 

(f) Yes. 

(g) No: Not symmetric; real axis segment is not to the left of an odd number of poles. 

(h) Yes. 

Problem 3: Nise Ch. 8, Problem 2 (p. 417 5th Ed.). 
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Problem 4: Nise Ch. 8, Problem 22 (p. 420 5th Ed.,). 

(a)	 Approximate values can be computed from incoming graph. High precision values, given 
in the next parts, are computed analytically. 
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(b) K > 23.93. 

(c) K = 81.83 for s = −13.04 ± 13.04j . 

(d)	 At the break-in point: s = −14.965 and K = 434.98 . 

MATLAB Command − line : 

>> g1=zpk([-10 -20],[-30],1) 
Zero/pole/gain: 
(s+10) (s+20) 

(s+30) 
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-------------------------

>> G=series(g1,tf(1,[1 -20 200])) 

Zero/pole/gain: 
(s+10) (s+20) 

(s+30) (s^2 - 20s + 200) 

>> rlocus(G) 
>> sgrid(.707,[]) 

Problem 5: 

(a) 

Root Locus 
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(b) 
π π rad 

Tp = 
ωn 

� 

1 − ζ2 
= 

ωd 
⇒ ωd = π 

sec 
⇒ K = 10.8 for s = −1.92 ± 3.14j 

(c) See the attached code.
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(d)	 The actual peak time is 0.818 sec, less than expected 1.0 sec value. This can be due to 
the presence of nearby faster poles. We have predicted the peak time from the dominant 
pole, while the next pole has a real value (decay component) of −2.57 compared to 
−1.92 of the dominant pole, and hence can have a substantial effect. 

Step Response 
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System: G_cl 
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Amplitude: 0.0585 
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MATLAB Command − line : 

>> g1=zpk([],[-3 -4],1) 

Zero/pole/gain: 
1 

(s+3) (s+4) 

>> G=series(g1,tf([1 4 5],[1 2 5])) 

Zero/pole/gain: 
(s^2 + 4s + 5) 

(s+3) (s+4) (s^2 + 2s + 5) 

>> rlocus(G) 
>> axis equal 
>> G_cl=feedback(G,10.8) 
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-----------------------------------------------

Zero/pole/gain: 
(s^2 + 4s + 5) 

(s^2 + 5.147s + 8.404) (s^2 + 3.853s + 13.56) 

>> step(G_cl) 

Problem 6: 

(a)	 There are 4 poles and 2 zeros. We have 2 branches going to infinity making an angle 
of ±90◦ with real axis and have a common intersection at σa = −1. The part of the 
branches in the real axis can be determined exactly,however the branch behavior from 
break-in point toward zeros or infinity asymptotes is not clear and we have plotted 
arbitrary straight lines for that section. 

Kps + Kds
2 + Ki ((s + 5)2 + 62) (s2 + 10s + 61) 

Gc(s) =	 = K = K
s s s 

48K(s2 + 10s + 61) 
G(s) = Gc(s)Gp(s) = 

s(s3 + 12s2 + 44s + 48) 

(s + 5)2 + 62 

G(s) = 48K 
s(s + 2)(s + 4)(s + 6) 

(0 + (−2) + (−4) + (−6)) − ((−5) + (−5)) 
σa =	 = −1 
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Pole-Zero Map 
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(b)


8




Im
a

g
in

a
ry

 A
x
is

 

Root Locus 

40


30


20


10


0


-10


-20


-30


-40


System: G 
Gain: 3.92 
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(c) Unstable for 0.13 < K < 3.92 . 
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