

Outline

1. Manufacturing Systems
2. Types of Plant Layouts
3. Production Rates
4. Design and Operations

What is mfg systems?
2.008 - Sping 2004

Time spectrum of Typical Activities in a Manufacturing Organization

```
    Seconds
    10
                                Period
                                Decade
                                Plant design, Machine Selection,
                                Year {}}{\begin{array}{l}{\mathrm{ Plant design, Machin}}\\{\mathrm{ System Simulation}}\\{\mathrm{ Process design:Ca}}
                Activity
                    107
                    Month
            l}\begin{array}{l}{\mathrm{ Porecss design: CAD}}\\{\mathrm{ Catalogs }}
            Cataoloss design:CAD
            Select manufacturing methods
                        Factory Operation
                                &actory Operation
            Transport Inventory
        Mart handling
            Load/Unload
            { Machine control
            CNC-DNC
            Adaptive control
            Millisecond }\begin{array}{l}{\mathrm{ Intelligent machines}}\\{\mathrm{ Process control}}
```

2008-Sping 2004

How Man, Machine, and Material Spend Time in the Factory

"Wast":" waiting for materials,
watching machine running,
watching machine running,
producing defects looking for
tools. fixing machine
breakdowns, producing
breakdowns, producing
unnecessary items, etc.
Waste": transportation, storage, $\quad \begin{aligned} & \text { "Waste": unnecessary } \\ & \text { inspection and rework } \\ & \text { movement of machine, }\end{aligned}$,
$\begin{array}{ll}\text { "Waste": transportation, storage, } & \begin{array}{l}\text { "Waste": unnecessary } \\ \text { inspection and rework }\end{array} \\ \text { movement of machine, setup } \\ \text { time, machine breakdown }\end{array}$

2008 -Sping 2004

Disruptions/Variation (Random Events)

- Machine failure
- Set-up change
- Operator absence
- Starvation/Blockage
- Demand change

Types of Plant Layout

- Job Shop
- Project Shop
- Flow Line
- Transfer Line
- Cellular System

Project Shop

Machines/Resoues
are brought to and removed from stationary part as required

Flow Line and Transfer Line

Cellular System

Machines/Resources are grouped
according to the
processes required for part families

Production Quantity and Plant Layout

2008 - Sping 2004

Production Rates (cont'd)

- Case II:
- One machine
- Machine breaks down (disruption)
- Everything else works

Efficiency MTTF MTTF
$\underset{\text { (utilization) }}{\text { Efficiency }}=\frac{\text { MTT }+ \text { MTTR }}{\text { MTT }}=\frac{\text { MTTR }}{\text { MTTR }}$
Production rate $=\frac{\text { Efficiency }}{\text { Operation time }}$

2008 - Sping 2004

Production Rates (cont'd) - Case II: - One machine - Machine breaks down (disruption) - Everything else works		
200.5 smom 2004		15

Production Rates

- Case I:
- One machine
- Everything works

Production rate $=\frac{1}{\text { Operation time }}$

2008-Sping 2004

Production Rates (cont'd)

- Case III:
- Many machines
- No machine breaks down
- No buffers

Production Rates (cont'd)

- Case IV:
- Many machines (same operation time)
- No machine breaks down
- No buffers
M_{1} \qquad M_{2} M_{i} M_{k} M_{k}

Production Rates (cont'd)

- Case V:
- Many machines (same operation time)
- Machine breaks down
- No buffers

Production Rates (cont'd)

- Case VI:
- Many machines and buffers in between
- Machine breaks down

Production Rates (cont'd)

- Production rate increases if:
- Increase the rate of the slowest machine
- Reduce the disruptions
- Introduce "buffers"
- Introduce in-process control

Disruptions
(Random Events)
• Machine failure
• Set-up change
• Operator absence
• Starvation/Blockage

Waiting
- Underutilization
- Idleness
- Inventory

Inventory/Work-in-Process (WIP)

- It costs money
- It gets damaged
- It becomes obsolete
- It shrinks
- It increases lead time

Cycle Time and Lead Time

$$
\text { Takt time }=\frac{\text { Daily available time }}{\text { Daily average demand }}
$$

Cycle Time

"Cycle Time"

- The time a part spends in the system

Little's Law: $L=\lambda w$
L : average inventory
λ : average production rate
w: average cycle time

Cycle Time (cont'd)

- Example:

Operation time $=1$, One-piece operation

Production rate $=1$
Cycle time $=5$
Inventory = 5

2008 - Sping 2004

Cycle Time
 One-Piece Production

2.

Operation time $=3$ minutes
Cycle time $=1,000 * 3+2 * 3=3,006$ minutes

2008 - Sping 2004

Cycle Time and Lead Time

Takt time $=\frac{\text { Daily available time }}{\text { Daily average demand }}$

Systems Design and Operation

- Cycle time < Lead time
- Lumpiness
- Information contents

Typical Design Guidelines

- Leveling
- Balancing
- Single-piece flow
- Low materials handling
- Low setup time
- Smaller lot size
- Low WIP
- Faster feedback

Plant Operations

- Push (MRP, ERP, etc.) vs. Pull (JIT)
- Batch vs. One-piece

