2.016 HW #5 Out: October 18, 2005 Due: October 25, 2005

1) Expand the following for i=1,2,3, j=1,2,3, and k=1,2,3, and write them in vector notation. Recall for tensor notation, letters that appear only once imply expansion into a vector, and repeated letters imply summation. For example: $u_i = [u_1, u_2, u_3] = \vec{u}$

a.
$$u_i$$

b. $u_i v_i$
c. $\frac{\partial u_i}{\partial x_i}$
d. $u_i \frac{\partial v_k}{\partial x_i}$
e. $\varepsilon_{ijk} \frac{\partial u_k}{\partial x_j}$

Consider a submarine built very poorly, such that the axis of the propeller makes an angle φ with the axis of the cylindrical submarine fuselage, as shown. If the propeller generates thrust, T, to drive the sub at steady-state speed, U, use inviscid flow theory (e.g. added mass) to find the trim angle, θ. (Note: despite my misleading artwork, φ ≠ θ) Assume the length of the sub is much greater than the radius, (R<<L).

3) The equation, $\eta = a\cos(kx - \omega t)$, is for a plane progressive wave moving to the [left] [right]. Draw a picture of the wave at time t = 0 sec and time t = 1 sec, and label the distance and direction one of the peaks has traveled in that time.

4) You run several experiments in a 100 m long, 3 m wide, 2 m deep towing tank in order to investigate the shallow- and deep-water approximations to the dispersion relationship. In each experiment, plane progressive waves are sent down the length of the tank using a wave paddle. For each wavelength given, calculate the frequency ω using the dispersion relationship and again using the appropriate approximation.

What is the error of the approximation $\left(error = \frac{exc}{c}\right)$

$$ror = \frac{exact - approx}{exact}$$
?

- a. $\lambda = 125 \text{ m}$
- b. $\lambda = 21 \text{ m}$
- c. $\lambda = 12.6 \text{ m}$
- d. $\lambda = 6.28 \text{ m}$
- e. $\lambda = 2.1 \text{ m}$

I suggest making a table in Excel for this exercise, because you will use some of the stuff in the table to do the next problem, and because the hyperbolic trig functions are a pain to do by hand. Write down the equations you use at the top of each column, so I know how you calculated each value.

- 5) Now compare the exact phase speed with the phase speed you'd calculate using the approximate frequencies. What is the percent error?
- 6) Finally, compare the exact group speed with the group speed you would approximate using the group speed approximations and the approximate phase speeds you found using the approximate frequencies. (Geez, that a lot of approximates!) What is the percent error?
- 7) Sketch the orbits of particles at various heights for the 21 m wavelength wave.