Supplementary note on the contact lens example

Why we need to slide, not to pull, contact lens.
Here, we assume a contact lens as a circular disc, as shown in the figure.

We are interested in calculating the force, F, which enables to hold the lens at its height, h, from an eye.
First, we consider the free body diagram for the lens, shown right.

Force balance for the lens gives

$$
F+\left(P_{i}-P_{a}\right) \pi a^{2}=2 \pi a \sigma \sin \theta
$$

or

$$
\begin{equation*}
F=\left(P_{a}-P_{i}\right) \pi a^{2}+2 \pi a \sigma \sin \theta \tag{1}
\end{equation*}
$$

The pressure of the inside liquid P_{i} is determined by the Young-Laplace equation.

$$
\begin{align*}
& P_{a}-P_{i}=\sigma\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \\
& R_{1}=\frac{h / 2}{\cos \theta} \& R_{2}=-a \\
& \text { Thus, } \quad P_{a}-P_{i}=\sigma\left(\frac{2 \cos \theta}{h}-\frac{1}{a}\right) \tag{2}
\end{align*}
$$

By combining the equation (1) and (2),

$$
\begin{aligned}
F & =\sigma\left(\frac{2 \cos \theta}{h}-\frac{1}{a}\right) \pi a^{2}+2 \pi a \sigma \sin \theta \\
& =\frac{2 \pi a^{2} \sigma}{h}\left[\cos \theta-\frac{h}{a}\left(\frac{1}{2}-\sin \theta\right)\right]
\end{aligned}
$$

For small $h\left(\frac{h}{a} \ll 1\right), \quad F \approx \frac{2 \pi a^{2} \sigma \cos \theta}{h}$
How large is F ?
e.g., for $h=1 \mu \mathrm{~m} \& \theta=0$
$\frac{F}{\pi a^{2}}=\frac{2 \sigma}{h}=1.5 \mathrm{bar}$

MIT OpenCourseWare
http://ocw.mit.edu

2.06 Fluid Dynamics

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

