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CHAPTER FIVE

MULTIPLE SCATTERING BY AN EXTENDED REGION OF

INHOMOGENEITIES

In this chapter we shall treat two types of extended inhomogeneities: (i) periodic and

(ii) random.

1 Waves in a periodic medium
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Propagation of light or sound wave is of long standing interest in several branches of

basic and appied physics, from old disciplines such as x ray diffraction in crytallography,

to the modern science of photonic crystals. Many problems in natural environment also

involve wave propagaion in periodic media. For example, nearly periodic sand bars are

freqeuently found in shallow seas outside the surf zone; their presence changes the wave

climate near the coast. The technology of remote-sensing, either by underwater sound

or by radio waves from a satellite, depends on our understanding of scattering by the

wavy sea surface.
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Figure 1: Bragg resonance due to contructive interference

In a periodic medium, the pheonomenon of Bragg resonance holds a special position.

Let us explain it for the one-dimensional case of monochromatic water waves passing over

a long stretch of parallel bars on an otherwise horizontal seabed. In nature, the bars are

usually of much smaller amplitude than the wave depth. Most waves can pass over them

without singificant reflection, except when the wavelength is an integral multiple of the

bar period. In Figure1, the special case where λ = 2λbar is sketched. Upon encountering

each bar crest, every incident wave crest is mostly transmitted and slightly reflected.

At a given bar crest, the height of the reflected wave crest is the sum of infintely many

left-going crests. We called it the n−th crest if its reflection is originated at the n-th
bar crest on the right. Because of the 1 : 2 ratio, each crest has traveled the distance

of 2nλbar = nλ since its first passage over the bar crest in question. As a consequence,

they are all in phase with one another, hence the sum of the reflected wave intensity is

very high.

We treat first waves in an elastic laminate of infinite extent. Borrowing the existing

knowledge in solid-state physics, we discuss the relation between Bragg resonance and

band gaps in the dispersion relation. We then treat the more practical case of finite

extent in order to study the tranmission and reflection. The asymptotic method of
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multiple scales is applied to derive the coupled-mode equations for the slowly varying

envelopes of incident and scattered waves.

The physics discussed here is representative of two and three dimensional period

media, which would call for a much more elaborate theoretical analysis.

2 Waves in an infinitely thick laminate

We begin with
∂

∂x

{
E(x)

∂u

∂x

}
= ρ

∂2u

∂t2
(2.1)

for the longitudinal displacment u(x, t). We shall assume that the elasticity is peri-

odically modulated about the mean value E0. Defining E(x) = E0E where E is a

dimensionless periodic function of x. Equation (2.1) can be rewritten as

∂

∂x

{
E(x)∂u

∂x

}
=

1

C2

∂2u

∂t2
(2.2)

where C =
√
E0/ρ.

Consider a monochromatic wave in an elastic laminate so that

u(x, t) = � (
U(x)e−iωt

)
(2.3)

then
∂

∂x

{
E(x)∂U

∂x

}
+
ω2

C2
U = 0 (2.4)

What sort of wave can exist with period L = Na (Born-von Karman condition)? Math-

ematically this is a homogeneous BVP, hence only eigensolutions exist for certain value

of the eigen frequency ω. In the limiting case of uniform medium E = 1, the solution is
clearly

U = V eikx (2.5)

where ω = Ck.

To solve the eigenvalue problem, Bloch (and Floquet) found the following theorem.
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2.1 1-D Bloch’s theorem

Bloch’ theorem: For the one-dimensional problem governed by the ODE

d

dx

(
E(x)dU

dx

)
+ α2U = 0, where E(x) = E(x+ a) and α =

ω

C
, (2.6)

subject to the condition that U(x) is periodic over the period L = Na, the solution is

of the form:

U(x) = U(x)eikx (2.7)

where U(x) = U(x+ a) is periodic in x and k is an eigenvalue.
We follow the reasoning in Ashcroft & Mermin in their more general proof for 3D

quantum mechanics.

Since E(x) is periodic with period a we can Fourier expand

E(x) =
∑
K

FKe
iKx (2.8)

where K is the short-hand notation for Kn = 2nπ/a, with n = 0,±1,±2,±3, ... ± ∞
and FK is a function of K. Note that

eiKa = ei2nπ = 1. (2.9)

Let the general periodic soluton be

U(x) =
∑

q

Vqe
iqx (2.10)

where the expansion coefficient Vq is a function of q. We substitute (2.8) and (2.10) into

(2.6), to get

α2
∑

q

Vqe
iqx −

∑
q

∑
K

q(q +K)FKVqe
i(q+K)x = 0

Let us change the summation variable in the double series by letting q + K = q′, or,

q′ = k −K:
α2

∑
q

Vqe
iqx −

∑
q′

∑
K

(q′ −K)q′FKVq′−Ke
iq′x = 0

or, ∑
q

[
α2Vq −

∑
K

(q −K)qFKVq−K

]
eiqx = 0

4



Becasue of the Born-von Karman condition, it can be shown that for different q, eiqx

are orthogonal to each other, so that

α2Vq −
∑
K

(q −K)qFKVq−K = 0 (2.11)

Let us change the dummy symbol K to K ′ in the sum, and replace

q = k −K (2.12)

α2Vk−K −
∑
K′
(k −K −K ′)(k −K)FK′Vk−K−K′ = 0 (2.13)

Let us change again: K ′′ = K +K ′ in the sum, then

α2Vk−K −
∑
K′′
(k −K ′′)(k −K)FK′′−KVk−K′′ = 0 (2.14)

Because K = K0,±K1,±K2, ..., this is an infinite set of simultaneous equations for

..., Vk+K2 , Vk+K1 , Vk(= Vk−K0), Vk−K1 , Vk−K2 , ...

For a fixed k, we have by definition (2.12), q = ...k +K2, k +K1, k, k −K1, k = K2, k−
K3, .... The corresponding coefficient solutions are: ...Vk+K2 , Vk+K1 , Vk, Vk−K1 , Vk−K2 , ....

Thus the wave solution is

Uk(x) =
∑
K

Vk−Ke
i(k−K)x (2.15)

Since for a fixed k

Uk(x) =
∑
K

Vk−Ke
i(k−K)x =

{∑
K

Vk−Ke
−iKx

}
eikx (2.16)

Denoting

Uk(x) =
∑
K

Vk−Ke
−iKx (2.17)

we get

Uk(x) = Uk(x)e
ikx (2.18)

Clearly

Uk(x) =
∑
K

Vk−Ke
−iKx = Uk(x+ a) =

∑
K

Vk−Ke
−iKxe−iKa (2.19)

because of (2.9). Bloch’s theorem is proven for the one dimensional problem.

We now use Bloch’s theorem to solve the eigenvalue problem.
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2.2 The dispersion relation- the eigenvalue condition

Consider a monochromatic wave in an elastic laminate so that

u(x, t) = � (
U(x)e−iωt

)
(2.20)

then
∂

∂x

{
E(x)∂U

∂x

}
+
ω2

c2
U = 0 (2.21)

where C2 = E0/ρ and E is periodic in x with period L. In in general E can be expanded
as a Fourier series

E(x) =
∞∑

m=−∞
eme

imKx (2.22)

where K = 2π
L
is the wavenumber of the fundamental harmonic1. We can assume that

E consists of the mean and the fundamental harmonic and rewrite it as

E(x) = 1 +
∑
m�=0

eme
imKx (2.23)

Applying the Floquet-Bloch theorem we assume the solution to be of the following form:

U(x) = eikx
∑

n

Vn(x)e
inKx (2.24)

Substituting (2.23) and (2.24) and in (2.21), and noting that

e±iKx∂U

∂x
=

∑
i(k + nK)Vne

i[k+(n±1)K]x =
∑

i[k + (n∓ 1)K]Vn∓1e
i[k+nK]x

we get

∑
n

(
ω2

C2
− (k + nK)2

)
Vne

i(k+nK)x −
∑
n,m

emVn(k + nK)(k + (n+m)K)e
i(k+(n+m))x

After changing the summation indices from n+m to n′, we find

∑
n

(
ω2

C2
− (k + nK)2

)
Vne

i(k+nK)x −
∑
n′,m

emVn′−m(k + (n
′ −m)K)(k + n′K)ei(k+n′K)x

1In two or three dimensions, K is replaced by the vector K which is called the reciprocal lattice

vector in crystallography and solid state physics.
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From the coefficients of all harmonics, an infinite set of homogeneous algebraic equations

for Vn: [
ω2

C2
− (k + nK)2

]
Vn −

∑
m

emVn−m(k + (n−m)K)(k + nK) = 0 (2.25)

In general these can be solved numerically.

As a reference, the solution for the limiting case of all em = 0 (uniform medium) is

U(x) = eikxV0, Vn = 0, n �= 0; (2.26)

where V0 is a constant. The eigenvalue condition is simply

ω

C
= ±k (2.27)

which are two straight lines in the upper half of k − ω plane. See Figure ??.

We know, however, that the general Bragg resonance condition is

k + nK = −k, i.e., k = ±K/2,±K,±3K/2, ... (2.28)

Let us consider the Bragg resonance near k − NK = −k or k = NK/2, for small

em = O(ε).

We first take n = −N ,[
ω2

C2
− (k −NK)2

]
V−N − e−Nk(k −NK)V0

−
∑
m

emV−N−m(k + (−N −m)K)(k −NK) = 0 (2.29)

and then take n = 0, [
ω2

C2
− k2

]
V0 − eNV−N(k −NK)k

−
∑
m

emV−m(k −mK)k = 0 (2.30)

For any n �= N , (2.25) tells us that Vn = O(ε)V0. Hence in (2.29) and (2.30), we can

ignore most terms except V−N and V0, so that[
ω2

C2
− (k −NK)2

]
V−N − e−Nk(k −NK)V0 = 0 (2.31)
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and [
ω2

C2
− k2

]
V0 − eN(k −NK)kV−N = 0 (2.32)

Let us now shift the origin:

k =
NK

2
+k′,

ω

C
=
NK

2
+
ω′

C
, where k′ ∼ O(e−N)
 1,

ω′

C
∼ O(e−N)
 1. (2.33)

By keeping only terms of the first order k′, ω′ we get

e−N
N2K2

4
V0 +NK

(
ω′

C
+ k′

)
V−N = 0

NK

(
ω′

C
− k′

)
V0 + eN

N2K2

4
V−N = 0

Vanishing of the coefficient determinant gives the eigenvalue condition(
ω′

C

)2

− k′2 = 1

16
|eN |2N2K2 (2.34)

which is represented by two branches of hyperbola in the k′ vs. ω′ plane. Use is made

of the fact that e−N = e∗N . Since

k′ =

√(
ω′

C

)2

− 1

16
|eN |2N2K2 (2.35)

If,
ω′

C
>
1

4
|eN |NK (2.36)

k′ is real; the wave is propagating. If

ω′

C
<
1

4
|eN |NK (2.37)

k′ is imaginary; the wave is evanescent. The hyperbolic branches appear as discontinu-

ities near the point of Bragg resonance as shown in Figure 2.2. This narrow band of

frequencies in the ω/C vs. k plane is called the forbidden band in solid state physics.

We can assign indices to the pieces of the dispersion curve : ω1(k) for the branch in

0 < k < K/2, ω2(k) for K/2 < k < K, ω3(k) for K < k < 3K/2 etc.

Remark: If we replace k by k +MK, (2.2) becomes

U(x) = eikx+iMKx
∑

n

Vn(x)e
inKx = eikx

∑
n

Vn(x)e
i(n+M)Kx
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Figure 2: Dispersion relation and bandgaps: Top: Correction near the first Bragg

resonance. Bottom: Dispersion curves.
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or

U(x) = eikx
∑
n′
Vn′−M(x)e

in′Kx

We can rename Vn′−M =Wn′ , without changing the solution. Also(2.25) becomes[
ω2

C2
− (k +MK + nK)2

]
Vn −

∑
m

emVn−m(k +MK + (n−m)K)(k +MK + nK) = 0

or [
ω2

C2
− (k + n′K)2

]
Vn′−M −

∑
m

emVn′−M−m(k + (n
′ −m)K)(k + n′K) = 0

or [
ω2

C2
− (k + n′K)2

]
Wn′ −

∑
m

emWn′−m(k + (n
′ −m)K)(k + n′K) = 0

Thus the eigen-value problem remains the same.

It is therefore possible to shift all the branches ωn(k) vs k and plot them in −K/2 <
k < K/2, which is called the first Brillouin zone.

−−−−−−−−−

3 Scattering by a finite layer of periodic laminate

Let us use a one-dimensional example to describe the phenomenon. First, since many

scatters must be involved in order for this phenomenon to be appreciable, the total region

of disturbances must be much greater than the typical wavelength. The perturbation

method of multiple scales can be used. Second, since reflection is strong, incident and

reflected wave must be allowed to be comparable in order.

Let us consider the one-dimensional scattering of elastic waves in a rod with a slightly

periodic elasticity,

ρ = constant, E = Eo(1 + εD cosKx), (3.1)

where D is of order unity, i.e.,

E0
∂

∂x

[
(1 + εD cos Kx)

∂u

∂x

]
= ρ

∂2u

∂t2
(3.2)
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We now assume that the spatial period of inhomogeneity % ≡ 2π/K and the elastic

wavelength %′ ≡ 2π/k = 2π
√
Eo/ρ/ω are comparable. As a consequence, wave reflection

can be significant.

Let us first try a naive expansion, u = u0 + εu1 + · · · . The crudest solution is easily
found to be

u0 =
A

2
eikx−iωt + c.c., (3.3)

where c.c. signifies the complex conjugate of the preceding term, and

2π

k
≡

√
Eo

ρ

2π

ω
, or

ω

k
= C =

√
E0

ρ
. (3.4)

At the next order the governing equation is

∂

∂x

(
Eo
∂u1

∂x

)
− ρ∂

2u1

∂t2
=

−EoD

2

∂

∂x

[(
eiKx + e−iKx

) ∂u0

∂x

]

=
−EoD

2

∂

∂x

[(
eiKx + e−iKx

) (
ikA

2
eikx−iωt − ikA∗

2
e−ikx+iωt

)]
. (3.5)

Clearly, when

K = 2k + δ, δ 
 k, (3.6)

some of the forcing terms on the right will be close to a natural mode exp(±i(kx+ ωt)).
Resonance of the reflected waves must be expected. It sufices to illustrate the response

to one of these terms,

Eo
∂2u1

∂x2
− ρ∂

2u1

∂t2
= Aeiφoeıδx, with φo = kx+ ωt.

Combining homogeneous and inhomogeneous solutions and requiring that u1(0, t) = 0,

we find

u1 =
Aeiφo

(
1− eiδx

)
Eo((k + δ)2 − k2)

.

Clearly if δ = O(ε), εu1 ∼ O(ε/δ) and is not small compared to u0 except for δx 
 1.

Furthermore as x increases, u1 grows as εx. Thus when Bragg condition is satisfied, the

reflected waves are resonated and is no longer much smaller that the incident waves in

the distance εx = O(1).

Let us now focus attention on the case of Bragg resonance. To render the solution

uniformly valid for all x, we introduce fast and slow variables in space

x, x̄ = εx (3.7)
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To allow slight detuning from exact resonance, we assume that the incident wave fre-

quency is ω + εω′, where εω′ represents the small detuning and gives rise to a very slow

variation in time. Therefore two time variables are needed,

t, t̄ = εt (3.8)

The following multiple scale expansion is then proposed,

u = u0(x, x̄; t, t̄) + εu1(x, x̄; t, t̄) + · · · . (3.9)

After making the changes

∂

∂x
→ ∂

∂x
+ ε

∂

∂x̄
,

∂

∂t
→ ∂

∂t
+ ε

∂

∂t̄
(3.10)

and substituting (3.9), (3.10) into (3.2), we get

∂

∂x

(
Eo
∂u0

∂x

)
− ρ∂

2u0

∂t2
= 0 (3.11)

at O(1). Anticipating strong but finite reflection, we take the solution to be

u0 =
A

2
eikx−iωt + ∗+ B

2
e−ikx−iωt + c.c.. (3.12)

where A(x1, t1) and B(x1, t1) vary slowly in space and time. At the order O(ε) we have

∂

∂x

(
Eo
∂u1

∂x

)
− ρ∂

2u1

∂t2
= −2Eo

∂2u0

∂x∂x̄
+ 2ρ

∂2u0

∂t∂t̄

−EoD

2

∂

∂x

[(
e2ikx + e−2ikx

) ∂u0

∂x

]

= −Eo

[
∂A

∂x̄
(ik)eikx−iωt + c.c. +

∂B

∂x̄
(−ik)e−ikx−iωt + c.c.

]

+ρ

[
∂A

∂t̄
(−iω)eikx−iωt + c.c. +

∂B

∂t̄
(−iω)e−ikx−iωt + c.c.

]

−EoD

4

∂

∂x

{(
e2ikx + c.c.

) ∂
∂x

[
Aeikx−iωt + c.c. +Be−ikx−iωt + c.c.

]}
(3.13)

The last line can be reduced to

−EoD

4

(
k2Beikx−iωt + c.c. + k2Ae−ikx−iωt + c.c.

−3k2Ae3ikx−iωt + c.c.− 3k2Be−3ikx−iωt + c.c.
)
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To avoid unbounded resonance of u1, i.e., to ensure the solvability of u1, we equate

to zero the coefficients of terms e±i(kx−ωt) and e±i(kx+ωt) on the right of (3.13). The

following equations are then obtained:

∂A

∂t̄
+ c
∂A

∂x̄
=
ikCD

4
B (3.14)

∂B

∂t̄
− c∂B

∂x̄
=
ikCD

4
A, (3.15)

where
√
Eo/ρo = C = ω/k denotes the phase speed. These equations govern the

macroscale variation of the envelopes of the incident and reflected waves, and can be

combined to give the Klein-Gordon equation

∂2A

∂t̄2
− C2∂

2A

∂x̄2
+

(
kCD

4

)2

A = 0. (3.16)

Introducing the symbol Ωo

kCD

4
=
ωD

4
≡ Ω0 (3.17)

which has the dimension of frequency, (3.16) many be written as

∂2A

∂t̄2
− C2∂

2A

∂x̄2
+ Ω2

0A = 0. (3.18)

With suitable initial and boundary conditions on the macro scale, one finds the slow

variation of these wave envelopes, hence the global behaviour of wave motion.

As an aside, let us first try a progressive-wave solution for the envelope in an infinite

domain:

A = A0e
iKx̄−Ωt̄ (3.19)

Physically, this amounts to a detuned wave

u = A(x̄, t̄)eikx−iωt = Ao exp[i(k + εK)x− i(ω + εΩ)t] + ∗ , x̄ < 0 , (3.20)

Clearly

Ω2 − C2K2 = Ω2
0 (3.21)

which represents two branches of hyperbola. Within the frequency gap |Ω| < Ω0, K is

imaginary and the envelope wave is evanescent. This result is equivalent to the band-gap

theory before.
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Now back to the finite laminate 0 < x̄ < L which is sandwiched between two semi-

infinte solids (x̄ < 0, x̄ > L) with the same uniform elasticity E0. Let the the incident

wave train arriving from x̄ ∼ −∞ be slightly detuned from resonance To the left and to

the right of the laminates, the governing equations are simply

At̄ + CAx̄ = 0 , Bt̄ − CBx̄ = 0 , x̄ < 0 , and x̄ > L . (3.22)

We shall assume further that B = 0 for x̄ > L (the rediation condition). Over the bars

(3.14) and (3.15), or (3.16) hold. In order that displacement and stress and horizontal

velocity be continuous at x = 0, L, A and B must be continuous at x̄ = 0, L. Since the

solutions must be of the form,

(A,B) = A0(T (x̄), R(x̄))e
−iΩt̄ , 0 < x̄ < L .

T and R are governed by

Tx̄x̄ +
(Ω2 − Ω2

0)

C
T = 0 , 0 < x̄ < L .

Several cases can be distinguished according to the sign of Ω2 − Ω2
0:

Subcritical detuning : 0 < Ω < Ω0 .

Let

Qc = (Ω2
0 − Ω2)1/2 (3.23)

then

T (x) =
iQC coshQ(L− x̄) + Ω sinhQ(L− x̄)

iQC coshQL+ ΩsinhQL
(3.24)

and

R(x) =
Q sinhQ(L− x̄)

iQC coshQL+ ΩsinhQL
. (3.25)

On the incidence side the reflection coefficient is just R(0) and on the transmission side

the transmission coefficient is T (L). Clearly the dependence on L and x̄ is monotonic.

In the limit of L→ ∞, it is easy to find that

T (x) = e−Qx̄ , R(x) =
Q

iQC + Ω
e−Qx̄ . (3.26)

Thus all waves are localized in the range x̄ < O(1/Q).

Supercritical detuning : Ω > Ω0 .
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Let

PC = (Ω2 − Ω2
0)

1/2 (3.27)

then the transmission and reflection coifficients are:

T (x) =
PC cosP (L− x̄)− iΩ sinP (L− x̄)

PC cosPL− iΩ sinPL (3.28)

and

R(x) =
−iQ0 sinP (L− x̄)

PC cosPL− iΩ sinPL . (3.29)

The dependence on L and x̄ is clearly oscillatory. Thus Ω0 is the cut-off frequency mark-

ing the transition of the spatial variation. For subcritical detuning complete reflection

can occur for sufficiently large L. For super-critical detuning there can be windows of

strong transission.

In the special case of perfect resonance, we get from (3.24) and (3.25) that

T (x̄) =
A

Ao

=
cosh Ωo(L−x̄)

C

cosh ΩoL
C

R(x̄) =
B

Ao

= −i sinh
Ωo(L−x)

C

cosh ΩoL
C

. (3.30)

A similar result is known for optical waves in layered media (Yariv & Yeh, 1984, p

197), and was also found for water waves over a wavy bed. In a laboratory experiment

for water waves, Heathershaw(1982) installed 10 sinusoidal bars of amplitude D = 5 cm

and wavelength 100 cm on the bottom of a long wave flume. Incident waves of length

2π/k = 200 cm were sent from one side of the bar patch. On the transmission side, waves

are essentially absorbved by breaking on a gentle beach. Sizable reflection coefficients

were measured along many stations over the bar patch.

As shown in Figure 3, both T (x̄) and R(x̄) decrease monotonically from x̄ = 0 to

x̄ = L, in good agreement with the experiments of Heathershaw. Thus enough small

bars can generate strong reflection, especially in very shallow water.

Exercise 5.1: Bragg resonance by a corrugated river bank.

An infinitely long river has contant depth h and contant averaged width 2a. In the

stretch 0 < x < L, the banks are slightly sinusoidal about the mean so that

y = ±a±B sinKx , KB ≡ ε
 1 . (3.31)
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Figure 3: Bragg scattering of surface water waves by periodic bars. Comparison of

theory with measurements by Heathershaw.

Figure 4: Can wavy banks serve as a breakwater?

See Fig. 4. Let a train of monochromatic waves be incident from x ∼ −∞,

ζ =
A

2
ei(kx−ωt) (3.32)

where kh, ka = O(1). Develop a uniformly valid linearized theory to predict Bragg

resonance. Can the corrugated boundary be used to reflect waves as a breakwater?

Discuss your results for various parameters that can affect the function as a breakwater.
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4 Wave localization in a random medium

[Ref]: Mei & Pihl Localization of nonlinear dispersive waves in weakly random media,

Proc. Roy. Soc. Lond. 2002, 458, 119-134.

There are numerous situations where one needs to know how waves propagate through

a medium with random impurities: light through sky with dust particles, sound through

water with bubbles, elastic waves through a solid with cracks, fibers, cavities, hard or soft

grains. Sea waves over a irregular topography, etc. It is known that, for one-dimensional

propagation, multiple scattering yields a change in the wavenumber (or phase velocity)

as well as an amplitude attenuation, if the inhomogeneities extend over a large distance.

These changes amount to a shift of the complex propagation constant with the real part

corresponding to the wavenumber and the imaginary part to attenuation. In particular,

the spatial attenuation is a distinctive feature of randomness and is effective for a broad

range of incident wave frequencies.This is in sharp contrast to periodic inhomogeneities

which cause strong scattering only for certain frequency bands (Bragg scattering, see

e.g., Chapter 1). Phillip W. Anderson (1958) was the first to show, in the context

of solid-state physics, that a metal conductor can behave like an insulator, if the ,ir-

crostructure has is disordered. This phenomoena, now called Anderson localization, is

now known to be important in classical systems also. A survey of localization in many

types of classical waves based on linearized theories can be found in Sheng (1998).

For weak inhomogeneties, the shift of propagation constant amounts to slow spatial

modulations with a length scale much longer than the wavelnegth by a factor inversely

proportional to the correlation of the fluctuations. In this section we apply the method

of multiple scales to introduce the theory for the simplest exampole of one-dimensional

sound.

We begin with the Helmhotz equation for sinusoidal waves,

d2U

dx2
+ k2(1 + εV (x))2U = 0, ∞x <∞. (4.1)

Let V (x) be a random function of x with zero mean and V (x) → 0, for x ∼ −∞. An
incident wave train

Uinc = A0e
ikx (4.2)
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arrives from the left-infinity where there is no disorder. What will happen, on the

average, to waves after they enter the region of disorder?

Consider an ensemble of random media. For each realization, the wave number now

fluctuates about the mean k by the amount order O(ε). Since 〈V 〉 = 0, we expect that,
on the average, the wave phase is affected only by the root-mean-square, wich is of the

order O(ε2). With this guess, it is natural that slow variations described by x2 = ε
2x

will be relevant. We assume that the disorder has two characteristc scales so that

V = V (x, x2) (4.3)

For simplicity we shall further assume that V is stationary with respect to the short

scale

〈V (x, x2)V (x
′, x2)〉 = Cvv(|x− x′|, x2) (4.4)

where 〈f〉 denotes the ensemble average of f .
Let us try the following expansion,

U = U0(x, x2) + εU1(x, x2) + ε
2U2(x, x2) + · · · (4.5)

Subsituting (4.5) into (4.1), the following perturbation equations are found,

∂2U0

∂x2
+ k2U0 = 0, (4.6)

∂2U1

∂x2
+ k2U1 = −2k2V U0, (4.7)

∂2U2

∂x2
+ k2U2 = −2 ∂U0

∂x∂x2

− k2
(
2V U1 + V

2U0

)
, (4.8)

The solution at the leading order is

U0 = A(x2)e
ikx where A(0) = Ao. (4.9)

At the next order the inomogeneous equation is solved by Green’s function G(x, x′)

defined by
∂2G

∂x2
+ k2G = δ(x− x′), (4.10)

where G is outgoing at infinities. The solution is found in Appendix A, Chapter 2 to be

G = − i

2k
eik|x−x′| (4.11)

18



(4.12)

The solution for U1 is

U1 = −
∫ ∞

−∞
dx′G(x, x′)

[
2k2V (x′, x2)U(x

′, x2)
]

= ik

∫ ∞

−∞
dx′V (x′, x2)e

ikx′
eik|x−x′| (4.13)

which is random with zero mean. For the O(ε2) problem, we note that

2
∂2U0

∂x∂x′
= 2ikeikx ∂A

∂x2

,

2k2V U1 = 2ikA(x2)e
ikx

∫
V (x, x2)V (x

′, x2)e
ik|x−x′|e−ik(x−x′)dx′,

k2V 2U0 = k
2eikxV (x, x2)V (x, x2)A(x2).

We now take the ensemble average of (4.14), and get

∂2〈U2〉
∂x2

+ k2〈U2〉 = −2ikeikx ∂A

∂x2

− 2ikk2A(x2)e
ikx

∫ ∞

−∞
〈V (x, x2)V (x

′, x2)〉eik|x−x′|e−ik(x−x′)dx′

− k2eikxA(x2)〈V 2(x, x2)〉

For 〈U2〉 to be solvable, we set the right-hand-side to zero,
∂A

∂x2

+ A

{
k2

∫ ∞

−∞
dx′Cvv(|x− x′|, x2)e

ik|x−x′|e−ik(x−x′)dx′ − ik

2
Cvv(0, x2)

}
= 0

Clearly the integral above is just a known function of x2 once the correlation function

is prescribed. Denoting

β(x2) = βr+ iβi = k
2

∫ ∞

−∞
dx′Cvv(|x−x′|, x2)e

ik|x−x′|e−ik(x−x′)dx′− ik
2
Cvv(0, x2). (4.14)

If β = 0, x2 < 0 and β = constant, x2 > 0, then the solution is simply

A = A(0)e−iβix2e−βrx2 (4.15)

Thus, not only the phase is changed but the amplitude decays exponentially over the

distance O(L) where

L = 1/βrε
2 (4.16)
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In summary, due to scattering by disorder, an apparent damping is created. The distance

L is called the localization distance.

For simple correlation functions, the integral for β can be explicitly evaluated. For

example let

Cvv(|x− x′|, x2) = σ
2(x2)e

−α|x−x′| (4.17)

so that σ2 is the RMS amplitude of the disorder. We leave it as an exercise to show that∫ ∞

−∞
dx′e−α|x−x′|eik|x−x′|e−ik(x−x′)dx′ =

2(α2 + 2k2)

α(α2 + 4k2)
+

2ik

α2 + 4k2
(4.18)

so that

β = βr + iβi = 2k
2σ2 α2 + 2k2

α(α2 + 4k2)
− ikσ2

2

α2

α2 + 4k2
(4.19)

The leading order wave is

U0 = A0 exp

{
ik

[
1 +

ε2σ2

2

α2

α2 + 4k2

]
x

}
exp−

{
2ε2k2σ2

α

(
α2 + 2k2

α2 + 4k2

)
x

}
, x > 0

(4.20)

As the RMS of the disorder increases, the wwavnumber increases, hence the wave length

decreases. A dimensionless localization distance can be defined as

kLloc =
1

2ε2σ2

1 + 4k2/α2

(k/α)(1 + 2k2/α2)
(4.21)

Note that the correlation length is O(α−1). If the waves are much longer than the

correlation length, k/α
 1; kLloc increases without bound and localization is weak. If

the waves are much shorter than the correlation length k/α� 1; kLloc decreases; waves

cannot penetrate deeply into the disordered region.

IAP (challenge) Project : Scattering of elastic waves by random distribution of

hard grains or cavities.

References on Optics, Physics, etc.:

C Kittel. Introduction to Solid State Physics. Wiley 1966

A. Yariv & P. Yeh. Optical Waves in Crystals. Wiley 1984

K Inoue, & K, Ohtaka, Photonic Crystals (Physics, Fabrication and Applications) ,

Springer 2004

J-M. Lourtioz, H Benisty, V. Berger, J-M Gérard, D Maystre & A A.Tchelnokov,

Photonic Crystals (Towards Nanoscale Photonic Devises) Springer, 2006.
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J. D. Joannopoulos, R. D. Meade & J. N. Winn, Photonic Crystals, Pinceton, 1995.
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