
Structural Mechanics 2.080 Lecture 2 Semester Yr

Lecture 2: The Concept of Strain

Strain is a fundamental concept in continuum and structural mechanics. Displacement

fields and strains can be directly measured using gauge clips or the Digital Image Correlation

(DIC) method. Deformation patterns for solids and deflection shapes of structures can be

easily visualized and are also predictable with some experience. By contrast, the stresses

can only be determined indirectly from the measured forces or by the inverse engineering

method through a detailed numerical simulation. Furthermore, a precise determination of

strain serves to define a corresponding stress through the work conjugacy principle. Finally

the equilibrium equation can be derived by considering compatible fields of strain and

displacement increments, as explained in Lecture 3. The present author sees the engineering

world through the magnitude and shape of the deforming bodies. This point of view will

dominate the formulation and derivation throughout the present lecture note. Lecture

2 starts with the definition of one dimensional strain. Then the concept of the three-

dimensional (3-D) strain tensor is introduced and several limiting cases are discussed. This

is followed by the analysis of strains-displacement relations in beams (1-D) and plates (2-

D). The case of the so-called moderately large deflection calls for considering the geometric

non-linearities arising from rotation of structural elements. Finally, the components of the

strain tensor will be re-defined in the polar and cylindrical coordinate system.

2.1 One-dimensional Strain

Consider a prismatic, uniform thickness rod or beam of the initial length lo. The rod is fixed

at one end and subjected a tensile force (Fig. (2.1)) at the other end. The current, deformed

length is denoted by l. The question is whether the resulting strain field is homogeneous

or not. The concept of homogeneity in mechanics means independence of the solution on

the spatial coordinates system, the rod axis in the present case. It can be shown that if

the stress-strain curve of the material is convex or linear, the rod deforms uniformly and a

homogeneous state of strains and stresses are developed inside the rod. This means that

local and average strains are the same and the strain can be defined by considering the total

lengths. The displacement at the fixed end x = 0 of the rod is zero, u(x = 0) and the end

displacement is

u(x = l) = l − lo (2.1)

The strain is defined as a relative displacement. Relative to what? Initial, current length

or something else? The definition of strain is simple but at the same time is non-unique.

ε
def
=

l − lo
lo

Engineering Strain (2.2a)

ε
def
=

1

2

l2 − l2o
l2

Cauchy Strain (2.2b)

ε
def
= ln

l

lo
Logarithmic Strain (2.2c)
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Each of the above three definitions satisfy the basic requirement that strain vanishes when

l = lo or u = 0 and that strain in an increasing function of the displacement u.

Consider a limiting case of Eq.(2.1) for small displacements
u

lo
� 1, for which lo+l ≈ 2lo

in Eq.(2.2b). Then, the Cauchy strain becomes

ε =
l − lo
lo

l + lo
2lo

∼=
l − lo
lo

2l

2lo
∼=
l − lo
lo

(2.3)

Thus, for small strain, the Cauchy strain reduces to the engineering strain. Likewise,

expanding the expression for the logarithmic strain, Eq.(2.2c) in Taylor series around l−lo ∼=
0,

ln
l

lo

∣∣∣∣
l/lo=1

∼=
l − lo
lo
− 1

2

(
l − lo
lo

)2

+ · · · ≈ l − lo
lo

(2.4)

one can see that the logarithmic strain reduces to the engineering strain.

The plots of ε versus
l

lo
according to Eqs.(2.2a)-(2.2c) are shown in Fig.(2.1).

Figure 2.1: Comparison of three definitions of the uniaxial strain.

Inhomogeneous Strain Field

The strain must be defined locally and not for the entire structure. Consider an infinitesimal

element dx in the undeformed configuration, Fig.(2.2).

After deformation the length of the original material element becomes dx + du. The

engineering strain is then

εeng =
(dx+ du)− du

dx
=

du

dx
(2.5)

The spatial derivative of the displacement field is called the displacement gradient F =
du

dx
.

For uniaxial state the strain is simply the displacement gradient. This is not true for general

3-D case.
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Figure 2.2: Undeformed and deformed element in the homogenous and inhomogeneous

strain field in the bar.

The local Cauchy strain is obtained by taking relative values of the difference of the

square of the lengths. As shown in Eq. (2.3), in order for the Cauchy strain to reduce to

the engineering strain, the factor 2 must be introduced in the definition. Thus

εc =
1

2

(dx+ du)2 − dx2

dx2
=

du

dx
+

1

2

(
du

dx

)2

(2.6)

or εc = F +
1

2
F 2. For small displacement gradients,

εc = εeng (2.7)

2.2 Extension to the 3-D case

Equation (2.5) can be re-written in an alternative form

du = εdx (2.8)

Consider an Euclidian space and denote by x = {x1, x2, x3} or xi the vector representing a

position of a generic point of a body. In the general three-dimensional case, the displacement

of the material point is also a vector with components u = {u1, u2, u3} or ui where i = 1, 2, 3.

Recall that the increment of a function of three variables is a sum of three components

du1(x1, x2, x3) =
∂u1
∂x1

dx1 +
∂u1
∂x2

dx2 +
∂u1
∂x3

dx3 (2.9)

In general, components of the displacement increment vector are

dui(xi) =
∂ui
∂x1

dx1 +
∂ui
∂x2

dx2 +
∂ui
∂x3

dx3 =

3∑
j=1

∂ui
∂xj

dxj (2.10)

where the repeated j is the so called “dummy” index. The displacement gradient

F =
∂ui
∂xj

(2.11)
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is not a symmetric tensor. It also contains terms of rigid body rotation. This can be shown

by re-writing the expression for F in an equivalent form

∂ui
∂xj
≡ 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(2.12)

Strain tensor εij is defined as a “symmetric” part of the displacement gradient, which is the

first term in Eq. (2.12).

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.13)

Now, interchange (transpose) the indices i and j in Eq.(2.13):

εji =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
(2.14)

The first term in Eq.(2.14) is the same as the second term in Eq.(2.13). And the second

term in Eq.(2.14) is identical to the first term in Eq.(2.13). Therefore the strain tensor is

symmetric

εij = εji (2.15)

The reason for introducing the symmetry properties of the strain tensor will be explained

later in this section. The second terms in Eq.(2.12) is called the spin tensor ωij

ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(2.16)

Using similar arguments as before it is easy to see that the spin tensor is antisymmetric

wij = −wji (2.17)

From the definition it follows that the diagonal terms of the spin tensor are zero, for example

w11 = −w11 = 0. The components, of the strain tensor are:

i = 1, j = 1 ε11 =
1

2

(
∂u1
∂x1

+
∂u1
∂x1

)
=
∂u1
∂x1

(2.18a)

i = 2, j = 2 ε22 =
∂u2
∂x2

(2.18b)

i = 3, j = 3 ε33 =
∂u3
∂x3

(2.18c)

i = 1, j = 2 ε12 = ε21 =
1

2

(
∂u1
∂x2

+
∂u2
∂x1

)
(2.18d)

i = 2, j = 3 ε23 = ε32 = −1

2

(
∂u2
∂x3

+
∂u3
∂x2

)
(2.18e)

i = 3, j = 1 ε31 = ε13 = −1

2

(
∂u3
∂x1

+
∂u1
∂x3

)
(2.18f)
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For the geometrical interpretation of the strain and spin tensor consider an infinitesimal

square element (dx1, dx2) subjected to several simple cases of deformation. The partial

derivatives are replaced by finite differences, for example

∂u1
∂x1

=
∆u1
∆x1

=
u1(x1)− u1(x1 + h)

h
(2.19)

Rigid body translation

Along x1 axis:

u1(x1) = u1(x1 + h) (2.20a)

u2 = u3 = 0 (2.20b)

x2 u2 

x1 

u1 

u1 u1 h 

h 

Figure 2.3: Rigid body translation of the infinitesimal square element.

It follows from 2.18a that the corresponding strain component vanishes, ε11 = 0. The

first component of the spin tensor is zero from the definition, ω11 = 0.

Extension along x1 axis

At x1 : u1 = 0.

At x1 + h : u1 = uo.

The corresponding strain is ε11 =
uo
h

.

Pure shear on the x1x2 plane

At x1 = 0 and x2 = 0: u1 = u2 = 0

At x1 = h and x2 = 0: u1 = 0 and u2 = uo
At x1 = 0 and x2 = h: u1 = uo and u2 = 0
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uo 

x2 u2 

x1 

u1 

Figure 2.4: The square element is stretched in one direction.

h 

h 

uo 

uo 

x2 u2 

x1 

u1 

Figure 2.5: Imposing constant deformative gradients.

It follows from Eq. (2.17) and Eq. (2.13) that:

ε12 =
1

2

(uo
h

+
uo
h

)
=
uo
h

(2.21)

ω12 =
1

2

(uo
h
− uo

h

)
= 0 (2.22)

The resulting strain is representing change of angles of the initial rectilinear element.

Rigid body rotation

At x1 = 0 and x2 = 0: u1 = u2 = 0

At x1 = h and x2 = 0: u1 = 0 and u2 = uo
At x1 = 0 and x2 = h: u1 = −uo and u2 = 0
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uo 

uo 

x2 u2 

x1 

u1 

Figure 2.6: An infinitesimal square element subjected to rigid body rotation.

Changing the sign of u1 at x1 = 0 and x2 = h from uo to −uo results in non-zero spin

but zero strain

ε12 =
1

2

(uo
h

+
(
−uo
h

))
= 0 (2.23)

ω12 =
1

2

(uo
h

+
(
−uo
h

))
=
uo
h

(2.24)

The last example provides an explanation why the strain tensor was defined as a symmetric

part of the displacement gradient. The physics dictates that rigid body translation and

rotation should not induce any strains into the material element. In rigid body rotation

displacement gradients are not zero. The strain tensor, defined as a symmetric part of the

displacement gradient removes the effect of rotation in the state of strain in a body. In other

words, strain described the change of length and angles while the spin, element rotation.

2.3 Description of Strain in the Cylindrical Coordinate Sys-

tem

In this section the strain-displacement relations will be derived in the cylindrical coordinate

system (r, θ, z). The polar coordinate system is a special case with z = 0.

The components of the displacement vector are {ur, uθ, uz}. There are two ways of

deriving the kinematic equations. Since strain is a tensor, one can apply the transformation

rule from one coordinate to the other. This approach is followed for example on pages

125-128 of the book on “A First Course in Continuum Mechanics” by Y.C. Fung. Or,

the expression for each component of the strain tensor can be derived from the geometry.

The latter approach is adopted here. The diagonal (normal) components εrr, εθθ, and

εzz represent the change of length of an infinitesimal element. The non-diagonal (shear)

components describe the change of angles.
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x 

y 

r 
θ 

x 

y 

z 

r 

z 

θ 

Figure 2.7: Rectangular and cylindrical coordinate system.

z 

r 

dz dr 

dθ 
θ 

dr u 

ur +
@ur

@r
dr

Figure 2.8: Change of length in the radial direction.

The radial strain is solely due to the presence of the displacement gradient in the r-

direction

εrr =

{
ur +

∂ur
∂r

dr − ur
}

dr
=
∂ur
∂r

(2.25)

The circumferential strain has two components

εθθ = ε
(1)
θθ + ε

(2)
θθ (2.26)

The first component is the change of length due to radial displacement, and the second

component is the change of length due to circumferential displacement.

From Fig.(2.9) the components ε
(1)
θθ and ε

(2)
θθ are calculated as

ε
(1)
θθ =

(r + ur)dθ − rdθ
rdθ

=
ur
r

(2.27a)

ε
(2)
θθ =

uθ +
∂uθ
∂θ

dθ − uθ
rdθ

=
1

r

∂uθ
∂θ

(2.27b)
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ur 

r dθ 

rdθ 

(r + ur)dθ 

O 

u✓ u✓ +
@u✓

@✓
d✓

Figure 2.9: Two deformation modes responsible for the circumferential (hoop) strain.

The total circumferential (hoop) component of the strain tensor is

εθθ =
ur
r

+
1

r

∂uθ
∂dθ

(2.28)

The strain components in the z-direction is the same as in the rectangular coordinate system

εzz =
∂uz
∂z

(2.29)

The shear strain εrθ describes a change in the right angle.

ur 
uθ 

dθ 

O 
θ 

dθ 
a a' rdθ b 

b' 
c 

c' 

dr 

u✓

r

@u✓

@r

1

r

@ur

@✓

Figure 2.10: Construction that explains change of angles due to radial and circumferential

displacement.

From Fig.(2.10) the shear strain over the {r, θ} plane is

εrθ =
1

2

[
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

]
(2.30)

On the {r, z} plane, the εrz shear develops from the respective gradients, see Fig.(2.11).
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z uz 

r 

ur 

r 

O z 

@uz

@r
dr

@ur

@z
dzuz 

ur 

Figure 2.11: Change of angles are {r, z} plane.

From the construction in Fig.(2.10), the component εrz is

εrz =
1

2

(
∂ur
∂z

+
∂uz
∂r

)
(2.31)

Finally, a similar picture is valid on the (tangent) {z, θ} plane

z 

θ 

@u✓

@z
dz

dz 

rd
θ 

uz 
uθ 

@uz

@✓
d✓

Figure 2.12: Visualization of the strain component εθz.

The component εθz of the strain tensor is one half of the change of angles, i.e.

εθz =
1

2

(
∂uz
r∂θ

+
∂uθ
∂z

)
(2.32)

To sum up the derivation, the six components of the infinitesimal strain tensor in the
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cylindrical coordinate system are

εrr =
∂ur
∂r

(2.33a)

εθθ =
ur
r

+
1

r

∂uθ
∂θ

(2.33b)

εzz =
∂ux
∂z

(2.33c)

εrθ = εθr =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
(2.33d)

εθz = εzθ =
1

2

(
∂uz
r∂θ

+
∂uθ
∂z

)
(2.33e)

εzr = εrz =
1

2

(
∂ur
∂z

+
∂uz
∂r

)
(2.33f)

Considerable simplifications are obtained in the case of axial (rotational symmetry for which

uθ = 0 and
∂

∂θ
[ ] = 0

εrr =
∂ur
∂r

εrθ = 0 (2.34a)

εθθ =
ur
r

εθz = 0 (2.34b)

εzz =
∂uz
∂z

εzr =
1

2

(
∂ur
∂z

+
∂uz
∂r

)
(2.34c)

The application of the above geometrical relations for axi-symmetric loading of circular

plates and cylindrical shells will be given in subsequent chapters.

2.4 Kinematics of the Elementary Beam Theory

The word “kinematics” is derived from the Greek word “kinema”, which means movements,

motion. Any motion of a body involves displacements ui, their increments dui and velocities

u̇i. If the rigid body translations and rotations are excluded, strains develop. We often say

“Kinematic assumption” or “Kinematic boundary conditions” or “Kinematic quantities”

etc. All it means that statements are made about the displacements and strains and/or

their rates. By contrast, the word “static” is reserved for describing stresses and/or forces,

even though a body could move. The point is that for statically determined structures, one

could determine stresses and forces without invoking motion. Such expressions as “static

formulation”, “static boundary conditions”, “static quantities” always refer to stresses and

forces.

Elementary is another word in the title of this section that requires explanation. A beam is

a slender structure that can be compressed, extended or bent. The beam must be subjected

to a transverse load (perpendicular to its axis). Otherwise it becomes something else, as

explained in 2.13.
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Figure 2.13: The type of loading distinguishes between five different types of structures.

All the above structures may have a similar slenderness. How slender the structure must

be to become a beam. The slenderness is defined as a length to thickness ratio
l

h
. If

l

h
> 20, the beam obeys the simplified kinematic assumptions and it is called an “Euler

beam”. Much shorter beams with
l

h
< 10 develop considerable shear stresses in addition

to bending stresses and must be treated by a different set of assumptions. Such beams are

referred to as Timoshenko beams. The intermediate range 10 <
l

h
< 20 is a grey area where

the simplifying assumptions of the elementary beam theory gradually lose validity.

This section deals with a solid section beams, as opposed to thin-walled sections. In the

present lecture notes, the rectangular right handed coordinate system (x, y, z) is consistently

used. The x-axis is directed along the length of the beam with an origin at a convenient

location, usually the end of the center of the beam. The y-axis is in the width direction with

its origin on the symmetry plane of the cross-section, 2.14. Finally, the z-axis is pointing

out down and it is measured from the centroidal axis of the cross-section (see Recitation 2

for the definition of a centroidal axis).

q 

y 

x 

z 

y 

z 

q 

Figure 2.14: A prismatic slender beam with a symmetric cross-section.

In structural mechanics the components of the displacement vector in x, y, and z direc-

2-12



Structural Mechanics 2.080 Lecture 2 Semester Yr

tions are denoted respectively by (u, v, w). The development of elementary beam theory is

based on three kinematic assumptions. Additional assumptions on the stress state will be

introduced later.

2.5 Euler-Bernoulli Hypothesis

In this section reference is often made to the beam axis. The meaning of the beam axis is

intuitive for a prismatic beam with a rectangular cross-section. It is the middle axis. Other

terms, such as: neutral axis, bending axis and centroidal axis are also frequently used. They

all express the same property that no axial stresses σxx should develop on the axis under

pure bending.

Hypothesis 1: Plan Remains Plane

This is illustrated in 2.15 showing an arbitrary cross-section of the beam before and after

deformation.

Before After 

(a) (b) (c) (d) 

Figure 2.15: Flat (b) and (c) and warped (d) cross-sections after deformations.

Imagine a straight cut made through the undeformed beam. The plane-remains-plane

hypothesis means that all material points on the original cut align also on a plane in the

deformed beam. The cases (b) and (c) obey the hypothesis but the warped section (d)

violates it.

Hypothesis 2: Normal Remains Normal

If the initial cut were made at right angle of the undeformed beam axis as in Fig.(2.16(a)),

it should remain normal to the deformed axis, see Fig.(2.16(b)).

In the sketch on Fig. (2.16(c)) the hypothesis is violated when the angle α 6= 90◦.

The Euler-Bernoulli hypothesis gives rise to an elegant theory of infinitesimal strains

in beams with arbitrary cross-sections and loading in two out-of-plane directions. The

interested reader is referred to several monographs with a detailed treatment of the subject,

of bi-axial loading of beams. The present set of notes on beams is developed under the
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Before After 

(a) (b) (c) 

α 

Figure 2.16: Testing the normal-remains-normal hypothesis.

assumption of planar deformation. This means that the beam axis motion is restricted only

to one plane.

Mathematically, the Hypothesis 1 is satisfied when the u-component of the displacement

vector is a linear function of z.

u(z) = u◦ − θz at any x (2.35)

The constant first term, u◦ is the displacement of the beam axis (due to axial force). The

second term is due to bending alone, Fig. (2.17).

uo h 

z 

θ 
dw

dx

Figure 2.17: Linear displacement field through the thickness of the beams.

The second Euler-Bernoulli hypothesis is satisfied if the rotation of the deformed cross-

section θ is equal to the local slope of the bent middle axis
dw

dx

θ =
dw

dx
(2.36)

Eliminating the rotation angle θ between equations 2.35 and 2.36 yields

u(x, z) = u◦ − dw

dx
z (2.37)

It can be seen from Fig.(2.17) that the displacement at the bottom (tensile) side of the

beam is negative, which explains the minus sign in the second term of Eqs. (2.36) and

(2.37).
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Hypothesis 3

The cross-sectional shape and size of the beam remain unchanged. This means that the

vertical component of the displacement vector does not depend on the z-coordinate. All

points of the cross-section move by the same amount.

w = w(x) (2.38)

In the case of planar deformation, which covers most of the practical cases of the beam

response, the y-component of the displacement vector vanishes

v ≡ 0 (2.39)

We are now in the position to calculate all components of the strain tensor from Eq. (2.17)

εxx =
dux
dx

=
du

dx
(2.40a)

εyy =
duy
dy

=
dv

dy
= 0 on account of 2.42 (2.40b)

εzz =
duzz
dz

=
dw(x)

dz
= 0 from 2.38 (2.40c)

εxy =
1

2

(
dux
dy

+
duy
dx

)
= 0 from 2.37 and 2.42 (2.40d)

εyz =
1

2

(
duy
dz

+
duz
dy

)
=

1

2

(
dv

dz
+

dw

dy

)
= 0 (2.40e)

εzx =
1

2

(
duz
dx

+
dux
dz

)
=

1

2

(
dw

dx
+

du

dz

)
(2.40f)

=
1

2

(
dw

dx
− dw

dx

)
= 0

It is seen that all components of the strain tensor vanish except the one in the direction of

beam axis.

Note that εxx is the only component of the strain tensor in the elementary beam the-

ory. Therefore the subscript “xx” can be dropped and, unless specified otherwise εxx = ε.

Introducing Eq.(2.37) into Eq.(2.38) one gets

ε(x, z) =
du◦(x)

dx
− d2w(x)

dx2
z (2.41)

The first term represents the strain arising from a uniform extension of the entire cross-

section

ε◦(x) =
du◦(x)

dx
(2.42)

The second term adds a contribution of bending. Introducing the definition of the curvature

of the beam axis

κ
def
= −d2w(x)

dx2
, (2.43)
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the expression for strain can be put in the final form:

ε(x, z) = ε◦(x) + zκ (2.44)

Mathematically, the curvature is defined as a gradient of the slope of a curve. The minus

sign in Eq.(2.27b) follows from the rigorous description of the curvature of a line in the

assumed coordinate system. Physically, it assumes that strains on the tensile side of the

beam are positive.

A quite different interpretation of the Euler-Bernoulli hypothesis is offered by considering

a two-term expansion of the exact strain profile in the Taylor series around the point z = 0

ε(x, z) = ε(x, z) |z=0 +
dε

dz

∣∣∣∣
z=0

z +
1

2

d2ε

dz2

∣∣∣∣
z=0

z2 + · · · (2.45)

Taking only the first two terms is a good engineering approximation but leads to some inter-

nal inconsistencies of the elementary beam theory. These inconsistencies will be explained

in the two subsequent lectures.

2.6 Strain-Displacement Relation of Thin Plates

The present course 2.080 is a prerequisite for a more advanced course 2.081 on Plates and

Shells. A complete set of lecture notes for 2.081 is available on OpenCourseWare. The

interested reader will find there a complete presentation of the theory of moderately large

deflection of plates, derived from first principles. Here only a short summary is given.

Notation

In the lectures on plates and shells two notations will be used. The formulation and some

of the derivation will be easier (and more elegant) by invoking the tensorial notation. Here

students should flip briefly to Recitation 1 where the above mathematical manipulations

are explained. For the purpose of the solving plate problems, the expanded notation will

be used.

Points on the middle surface of the plate are described by the vector {x1, x2} or xα,

α = 1, 2 in tensor notation or {x, y} in expanded notation.

Likewise, the in-plane components of the displacement vector are denoted by {u, v}.
The vertical component of the displacement vector in the z-direction is denoted by w.

Plate versus Beam Theory

The plate theory requires fewer assumptions and is more self-consistent than the beam

theory. For one, there are no complications arising from the concept of the centroidal axis

for arbitrarily shaped prismatic beams. The z-coordinate is measured from the middle

plane which is self explanatory. Finally, the flexural/torsional response of non-symmetric

and/or thin-walled cross-section beams is not present in plates. The complexity of the plate
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formulation comes from the two-dimensionality of the problem. The ordinary differential

equations in beams are now becoming partial differential equations.
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ADVANCED TOPIC

2.7 Derivation of the Strain-Displacement Relation for Thin

Plates

The Love-Kirchoff hypothesis extends the one-dimensional Euler-Bernoulli assumptions

into plates. A plate can be bent in two directions, forming a double curvature surface.

Therefore the plane-remains-plane and normal-remains-normal properties are now required

in both directions. Thus, Eq. (2.35) and Eq. (2.36) take the form

uα = u◦α − θαz (2.46a)

θα =
∂w

∂xα

def
= w,α (2.46b)

where θα is the slope (rotation) in xα-direction. Upon elimination of θα between the above

equation, one gets the familiar linear dependence of the in-plane components of the dis-

placement vector on the z-coordinate

uα(xα, z) = u◦α(xα)− zw,α (2.47)

The constant thickness (w = ẇ(xα)) is the third kinematic assumption of the plate theory.

Now, watch carefully how the strain components in the plate are calculated. Considering

all components of the strain tensor, one can distinguish three in-plane strain components

εαβ (framed area on the matrix below) and three out-of-plane components.

ε13

εαβ ε23

ε33




The through thickness strain component vanishes on the assumption of independence

of the vertical displacement on the coordinate z

ε33 = εzz =
δw

δz
= 0 (2.48)

The two out-of-plane shear components of the strain tensor εα3 vanish due to the Love-

Kirchoff hypothesis, Eq.(2.47),

εα3 =
1

2

(
δuα
δz

+
δw

δxα

)
=

1

2
(uα,z + w,α)

=
1

2

[
d

dz
(u◦α(xα)− zw,α) + w,α

]
= 0

(2.49)
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The non-vanishing components of the strain tensor are the in-plane strain components

εαβ =
1

2
(uα,β + uβ,α) α, β = 1, 2 (2.50)

where uα is defined by 2.32. Performing the differentiation one gets

εαβ =
1

2
[u◦α − zw,α],β +

1

2
[u◦β − zw,β],α

=
1

2
(u◦α,β + u◦β,α)− 1

2
z[w,αβ + w,βα]

(2.51)

The first term in Eq. (2.51) is the strain ε◦αβ arising from the membrane action in the plate.

It is a symmetric gradient of the middle plane displacement u◦α. Since the order of partial

differentiation is not important, Eq. (2.51) simplifies to

εαβ(xα, z) = ε◦αβ(xα)− zw,αβ (2.52)

Defining the curvature tensor καβ by

καβ = −w,αβ = − ∂2w

∂xα∂xβ
(2.53)

The strain-displacement relation for thin plates takes the final form

εαβ = ε◦αβ + zκαβ, (2.54)

where

ε◦αβ =
1

2
(u◦α,β + u◦β,α) (2.55)

END OF ADVANCED TOPIC
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2.8 Expanded Form of Strain-Displacement Relation

Having derived the geometric relations in the tensorial notations, equations (2.54) and (2.55)

will be re-written in the coordinate system (x, y) and physical interpretation will be given

to each term. Consider first (2.55)

α = 1, β = 1 x1 = x, ε◦xx =
1

2

(
∂u◦x
∂x

+
∂u◦x
∂x

)
=
∂u◦x
∂x

(2.56a)

α = 2, β = 2 x2 = y, ε◦xx =
1

2

(
∂u◦y
∂y

+
∂u◦y
∂y

)
=
∂u◦y
∂y

(2.56b)

α = 1, β = 2 x1 = x, x2 = y, ε◦xy =
1

2

(
∂u◦x
∂y

+
∂u◦y
∂x

)
(2.56c)

The ε◦xx and ε◦yy components denote strains of the middle surface of the plate in the x and

y directions, respectfully. The membrane strains are due to the imposed displacements or

membrane forces applied to the edges. In the theory of small deflection of plates, lateral

pressure loading will not produce membrane strains. By contrast, membrane strains do

develop in the theory of moderately large deflection of plates due to transverse loading.

This topic will be covered later in Lecture 6.

The third component of the strain tensor is the in-plane shear strain ε◦xy. It represents

the change of angles in the plane of the plate due to the shear loading at the edges. The

geometrical interpretation of the membrane strain tensor is similar to that given for the

general strain tensor in Figures (2.4) and (2.5).

The curvature tensor καβ requires a careful explanation. Consider an infinitesimal seg-

ment ds of a curve and fit into it a circle of an instantaneous radius ρ, Fig. (2.18). Then

ds = ρdθ (2.57)

dθ 

ρ 

ds 
A 

A' 

A 

A' 

dθ dθ 

Figure 2.18: Change of slope of a line between two points

Mathematically, the curvature of any line κ is the change of the slope as one moves

along the curve

κ
def
=

dθ

ds
(2.58)
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By comparing Eq. (2.58) with Eq. (2.46b), the curvature in [
1

m
] is the reciprocity of the

radius of curvature κ =
1

ρ
. The first component of the curvature tensor, defined by Eq.

(2.54) is

α = 1, β = 1 x1 = x κxx = −∂
2w

∂x2
= − ∂

∂x

(
∂w

∂x

)
=

∂

∂x
(−θx) (2.59)

This will be the only component of the curvature tensor if the plate is subject to the so-called

cylindrical bending.

x 

y 

x 

y (a) (b) 

Figure 2.19: (a) cylindrical bending of a plate, and (b) bending with a twist.

The interpretation of the κyy components of the curvature tensor

α = 2, β = 2 x2 = y κyy = −∂
2w

∂y2
= − ∂

∂y
(−θy) (2.60)

is similar as before. More interesting is the mixed component of the curvature tensor κxy

α = 1, β = 2 x1 = x, x2 = y κxy = − ∂2w

∂x∂y
= − ∂

∂y
(−θx) (2.61)

To detect κxy one has to check if the slope in one direction, say θx changes along the second

y-direction. It does not for a cylindrical bending, 2.14(a). But if it does, the plate is twisted,

as shown in 2.14(b). Therefore, the component κxy is called a twist.

An important parameter that distinguishes between these classes of the deformed shape

of a plate is the Gaussian curvature, κG. The Gaussian curvature is defined as a product

of two principal curvatures

κG = κIκII (2.62)

The curvature is a tensor, so its components change by rotating the coordinate system by

an angle ψ to a new direction (x′, y′). There is one such an angle ψp for which the twisting

components vanish. The remaining diagonal components are called principal curvature.

The full coverage of the transformation formulae for vectors and tensors are presented in

Recitation 2. Using these results, the Gaussian curvature can be expressed in terms of the

components of the curvature tensor

κG = κxxκyy − κ2xy (2.63)
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For cylindrical bending the twist κxy as well as one of the principal curvatures vanishes

so that the Gaussian curvature is zero. The sign of the Gaussian curvature distinguishes

between three types of the deformed plate, the bowl, the cylinder and the saddle, Fig.(2.20).

Bowl, κG > 0 Cylinder, κG = 0 Saddle, κG < 0 

Figure 2.20: Deformed plate with three different classes of shapes.

The consideration of Gaussian curvature introduces important simplifications in formu-

lation and applications of the energy method in structural mechanics. A separate lecture

will be devoted to this topic.

2.9 Moderately Large Deflections of Beams and Plates

A complete presentation of the theory of moderately large deflections of plates, derived

from first principles is presented in the course 2.081 Plates and Shells. The lecture notes

for this course are available on OpenCourseWare. There the strain-displacement relation

for the theory of moderately large deflection of beams are derived. Here the corresponding

equations for plates are only stated with a physical interpretation. An interested reader is

referred to the Plates and Shells notes for more details.

Defining moderately large deflections of beams

What are the “moderately large deflections” and how do they differ from the “small deflec-

tion”. To see the difference, it is necessary to consider the initial and deformed configuration

of the beam axis. The initial and current length element in the undeformed and deformed

configuration respectively is denoted dx and ds, as in Fig. (2.21)

dx 

ds 

dx 

ds 

dx 

ds 
dw θ 

Figure 2.21: Change of length of the beam axis produced by rotation.
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From the geometry of the problem

dx = ds cos θ ≈ ds

[
1− θ2

2

]
(2.64)

One can distinguish between three theories:

(i) Small deflections, linear geometry θ2 � 1, dx ≈ ds, Fig. (2.21(a)).

(ii) Moderately large deflections. The two-term expansion of the cosine function gives a

good approximation for 0 < θ < 10◦. Relation between dx and ds is given by Eq.

(2.64), Fig. (2.21(b)).

(iii) For larger rotation, a full nonlinearity of the problem must be considered.

The present derivation refers to case (ii) above. The Cauchy strain measure, defined in Eq.

(2.2b) is adopted:

ε =
ds2 − dx2

2dx2
(2.65)

The current length ds can be expressed in terms of dx and dw, see Fig.(2.21)

ds2 = dx2 + dw2 (2.66)

From the above two equations, the strain of the beam axis due to element rotation, εrot is

ε =
1

2

(
dw

dx

)2

=
1

2
θ2 (2.67)

The beam axis also extends due to the gradient of the axial component of the displacement

vector, defined by Eq.(2.42). Therefore the total strain of the beam axis due to the combined

extension and rotation is

ε◦ =
du

dx
+

1

2

(
dw

dx

)2

(2.68)

It can be noticed that the second term in the above equation is always positive while the

first term can be either positive or negative. In a special case the two terms can cancel one

another even though a beam undergoes large deformation.

The question often asked by students is if the expression for the curvature, given by Eq.

(2.43) should also be modified due to larger rotation. From the mathematical point of view

the answer is YES. But engineers have a way to get around it.

In the rectangular coordinate system the exact definition of the curvature of the line is:

κ =
−d2w

dx2(
1 +

(
dw

dx

)2
)3/2

(2.69)
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In the limit
dw

dx
→ 0 the linear definition is recovered from the nonlinear equation Eq.

(2.69). The difference between Eq.(2.43) and Eq.(2.69) is small in the case of moderately

large deflection.

The total strain at an arbitrary point of a beam undergoing moderately large deflection

is

ε =
du

dx
+

1

2

(
dw

dx

)2

︸ ︷︷ ︸
membrane strain ε◦

+ zκ︸︷︷︸
bending strain zκ

(2.70)

Extension to Moderately Large Deflection of Plates

In the compact tensorial notation, the nonlinear strain-displacement relation takes the form

εαβ =
1

2
(uα,β + uβ,α) +

1

2
w,αw,β + zκαβ (2.71)

By comparing with a similar expression for the small deflection theory, Eq.(2.54) and

Eq.(2.55), the new nonlinear term is

1

2
w,αw,β =

1

2

∂w

∂xα

∂w

∂xβ
(2.72)

This term forms a 2× 2 matrix:∣∣∣∣∣∣∣∣
1

2

(
∂w

∂x

)2 1

2

∂w

∂w

∂x

∂y
1

2

∂w

∂y

∂w

∂x

1

2

(
∂w

∂y

)2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
θ2x
2
,
1

2
θxθy

1

2
θxθy,

θ2y
2

∣∣∣∣∣∣∣ (2.73)

The diagonal terms represent square of the slope of the deflection shape in x and y directions.

The non-diagonal terms are symmetric and are a product of slopes in the two directions.

This term vanishes for cylindrical bending.

2.10 Strain-Displacement Relations for Circulate Plates

The theory of circular plates is formulated in the cylindrical coordinate system (r, θ, z). The

corresponding components of the displacement vector are (u, v, w). In the remainder of the

notes, the axi-symmetric deformation is assumed, which would require the loading to be

axi-symmetric as well. This assumption brings four important implications

(i) The circumferential component of the displacement is zero, v ≡ 0

(ii) There are no in-plane shear strains, εrθ = 0

(iii) The radial and circumferential strains are principal strains
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(iv) The partial differential equations for plates reduces to the ordinary differential equa-

tion where the radius is the only space variable.

Many simple closed-form solutions can be obtained for circular and annular plates under

different boundary and loading conditions. Therefore such plates are often treated as pro-

totype structures on which certain physical principles could be easily explained.

The membrane strains on the middle surface are stated without derivation

ε◦rr =
du

dr
+

1

2

(
dw

dr

)2

(2.74a)

ε◦θθ =
u

r
(2.74b)

The two principal curvatures are

κrr = −d2w

dr2
(2.75a)

κθθ = −1

r

dw

dr
(2.75b)

The sum of the bending and membrane strains is thus given by

εrr(r, z) = ε◦rr(r) + zκrr (2.76a)

εθθ(r, z) = ε◦θθ(r) + zκθθ (2.76b)

It can be noticed that the expression for the radial strains and curvature are identical to

those of the beam when r is replaced by x. The expressions in the circumferential direction

are quite different.
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