
Structural Mechanics 2.080 Lecture 4 Semester Yr

Lecture 4: Development of Constitutive Equations

for Continuum, Beams and Plates

This lecture deals with the determination of relations between stresses and strains, called

the constitutive equations. For an elastic material the term elasticity law or the Hooke’s

law are often used. In one dimension we would write

σ = Eε (4.1)

where E is the Young’s (elasticity) modulus. All types of steels, independent on the yield

stress have approximately the same Young modulus E = 2.GPa. The corresponding value

for aluminum alloys is E = 0.80 GPa. What actually is σ and ε in the above equation? We

are saying the “uni-axial” state but such a state does not exist simultaneously for stresses

and strains. One dimensional stress state produces three-dimensional strain state and vice

versa.

4.1 Elasticity Law in 3-D Continuum

The second question is how to extend Eq.(4.1) to the general 3-D state. Both stress and

strain are tensors so one should seek the relation between them as a linear transformation

in the form

σij = Cij,klεkl (4.2)

where Cij,kl is the matrix with 9 × 9 = 81 coefficients. Using symmetry properties of the

stress and strain tensor and assumption of material isotropy, the number of independent

constants are reduced from 81 to just two. These constants, called the Lame’ constants, are

denoted by (χ, µ). The general stress strain relation for a linear elastic material is

σij = 2µεij + λεkkδij (4.3)

where δij is the identity matrix, or Kronecker “δ”, defined by

δij =

∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣ or
δij = 1 if i = j

δij = 0 if i 6= j
(4.4)

and εkk is, according to the summation convention,

εkk = ε11 + ε22 + ε33 =
dV

V
(4.5)
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In the expanded form, Eq. (4.3) reads

σ11 = 2µε11 + λ(ε11 + ε22 + ε33), δ11 = 1 (4.6a)

σ22 = 2µε22 + λ(ε11 + ε22 + ε33), δ22 = 1 (4.6b)

σ33 = 2µε33 + λ(ε11 + ε22 + ε33), δ33 = 1 (4.6c)

σ12 = 2µε12 δ12 = 0 (4.6d)

σ23 = 2µε23 δ23 = 0 (4.6e)

σ31 = 2µε31 δ31 = 0 (4.6f)

Our task is to express the Lame’ constants by a pair of engineering constants (E(ν),

where ν is the Poisson ratio). For that purpose, we use the virtual experiment of tension

of a rectangular bar

N 

N 

1 

2 
3 

ε11 Extension 
positive 

ε33 
Contraction 
negative 

Figure 4.1: Uniaxial tension of a bar.

In the conceptual test, measured are the force, displacement and change in the cross-

sectional dimension. The experimental observations can be summarized as follows:

• σ11 is proportional to ε11, σ11 = Eε11

• ε22 is proportional to ε11, ε22 = −νε11

• ε33 is proportional to ε11, ε33 = −νε11

Thus the uniaxial tension is producing the one-dimensional state of stress but three-dimensional

state of strain

σij =

∣∣∣∣∣∣∣
σ11 0 0

0 0 0

0 0 0

∣∣∣∣∣∣∣ εij =

∣∣∣∣∣∣∣
ε11 0 0

0 ε22 0

0 0 ε33

∣∣∣∣∣∣∣ (4.7)
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We introduce now the above information into Eq. (4.6).

σ11 = 2µε11 + χ(ε11 − νε11 − νε11) = Eε11 (4.8a)

σ22 = 2µ(−νε11) + χ(ε11 − νε11 − νε11) = 0 (4.8b)

and obtain two linear equations relating (χ, µ) with (E, ν)

2µ+ χ(1− 2ν) = E (4.9a)

−2µν + χ(1− 2ν) = 0 (4.9b)

Solving Eq.(4.9) for µ and χ gives

µ =
E

2(1− ν)
(4.10a)

χ =
Eν

(1 + ν)(1− 2ν)
(4.10b)

The general, 3-D elasticity law, expressed in terms of (E, ν) is

σij =
E

1 + ν

[
εij +

ν

1− 2ν
εkkδij

]
(4.11)

The mean stress p where −p =
1

3
σkk =

1

3
(σ11 +σ22 +σ33) is called the hydrostatic pressure.

At the same time the sum of the diagonal components of the strain tensor denotes the

change of volume. Let us make the so-called “contraction” of the stress tensor in Eq.(4.11),

meaning that i = j = k

σkk =
E

1 + ν

[
εkk +

ν

1− 2ν
εkk · 3

]
(4.12)

where δkk = δ11 + δ22 + δ33 = 1+1+1 = 3. From the above equations the following relation

is obtained between the hydrostatic pressure and volume change

−p = κ
dV

V
(4.13)

where κ is the bulk modulus

κ =
E

3(1− 2ν)
(4.14)

The elastic material is clearly compressible. It is the crystalline lattice that is compressed

but on removal the forces returns to the original volume.

The inverted form of the 3-D Hook’s law is

εij =
1 + ν

E
σij −

ν

E
σkkδij (4.15)
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which in terms of the components yields

ε11 =
1

E
[σ11 − ν(σ22 + σ33)] (4.16a)

ε22 =
1

E
[σ22 − ν(σ11 + σ33)] (4.16b)

ε33 =
1

E
[σ33 − ν(σ11 + σ22)] (4.16c)

ε12 =
1

2ε
σ12 (4.16d)

ε23 =
1

2ε
σ23 (4.16e)

ε31 =
1

2ε
σ31 (4.16f)

where G =
E

2(1 + ν)
is called the shear modulus. Eq.(4.16) illustrates the coupling of

individual direct strains with all direct (diagonal) components of the stress tensor. At the

same time there is no coupling in shear response. The shear strain is proportional to the

corresponding shear stress.

4.2 Specification to the 2-D Continuum

Plane Stress

This is the state of stress that develops in thin plates and shells so it requires a careful

consideration. The stress state in which σ3j = 0, where the x3 = z axis is in the through

thickness direction. The non-zero components of the stress tensor are:

σij =

∣∣∣∣∣∣∣
σ11 σ12 0

σ21 σ22 0

0 0 0

∣∣∣∣∣∣∣ εij =

∣∣∣∣∣∣∣
ε11 ε12 0

ε21 ε22 0

0 0 ε33

∣∣∣∣∣∣∣ (4.17)

where i, j = 1, 2, 3 and α, β = 1, 2. Accordingly, σkk = σ11 + σ22 + σ33 = σγγ + 0. The 2-D

elasticity law takes the following form in the tensor notation

εαβ =
1 + ν

E
σαβ −

ν

E
σγγδαβ (4.18)

It can be easily checked from Eq.(4.18) that in plane stress ε13 = ε23 = 0 but ε33 =

− ν
E

(σ11+σ22). The through-thickness component of the strain tensor is not zero. Because it

does not enter the plane stress strain-displacement relation, its presence does not contribute

to the solutions. It can only be determined afterwards from the known stresses σ11 and σ22.

By making contraction εkk =
1− ν
E

σkk, one can easily invert Eq.(4.18) in the form

σαβ =
E

1− ν2
[(1− ν)εαβ + νεγγδαβ] (4.19)
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The above equation is a starting point for deriving the elasticity law in generalized quantities

for plates and shells. We shall return to that task later in this lecture. Before that, let’s

discuss three other important limiting cases

σ11 =
E

1− ν2
(ε11 + νε22) (4.20a)

σ22 =
E

1− ν2
(ε22 + νε11) (4.20b)

σ13 =
E

1 + ν
ε12 (4.20c)

Sheet metal 

σ11 
σ22 

σ11 

σ22 σ21 
σ12 

A layer in a thin plate or shell 

Figure 4.2: Examples of plane stress structures.

Plane strain holds whenever ε2j = 0. By imposing a constraint on ε22 = 0, a reaction

immediately develops in the direction as σ22 6= 0.

The components of the strain and Eq.(4.8) stress tensors are

εij =

∣∣∣∣∣∣∣
ε11 ε12 0

ε21 ε22 0

0 0 0

∣∣∣∣∣∣∣ σij =

∣∣∣∣∣∣∣
σ11 σ12 0

σ21 σ22 0

0 0 σ33

∣∣∣∣∣∣∣ (4.21)

Can you show that under the assumption of the plane strain, the reaction stress σ33 =

ν(σ11+σ22)? The plane strain is encountered in many practical situations, such as cylindrical

bending of a plate or wide beam.

1 
2 

3 

M 
1 

2 
3 

N 

N 

Figure 4.3: Tension of bending of a wide sheet/plate gives rise to plane strain.
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Uniaxial Strain

Uniaxial strain is achieved when the displacement in two directions are constrained. For

example, soil or granular materials are tested in a cylinder (called confinement) with a

piston, Fig.(4.4). The uniaxial strain also develops in a compressed layer between two

rigid plates. Also high velocity plate-to-plate impact products the one-dimensional strain.

Here the only component of the strain tensor is the volumetric strain. The plate-to-plate

experiments are conducted to establish the nonlinear compressibility of metals under very

high hydrostatic loading σkk = −3p. Similarly, the plane wave in the 3-D space is generating

a uniaxial strain.

Confinement 

V V 

Figure 4.4: Examples of problems in which the strain state is uniaxial.

The components of the stress and strain tensor in the uniaxial strain are:

σij =

∣∣∣∣∣∣∣
σ11 σ12 0

σ21 σ22 0

0 0 σ33

∣∣∣∣∣∣∣ εij =

∣∣∣∣∣∣∣
ε11 0 0

0 0 0

0 0 0

∣∣∣∣∣∣∣ (4.22)

Where the reaction stresses are related to the active stress σ11 by σ22 = σ33 =
ν(1 + ν)σ11

1− ν2
.

Can you prove that?

The uniaxial stress state was discussed earlier in this lecture when converting the Lame’

constants into the engineering constants (E, ν).

4.3 Hook’s Law in Generalized Quantities for Beams

There are three generalized forces in beams (M,N, ν) but only two generalized kinematic

quantities (ε◦, κ). There is no generalized displacement on which the shear force could exert

work. So the shear force is treated as a reaction in the elementary beam theory. This

gives rise to some internal inconsistency in the beam theory, which will be enumerated in a

separate section.
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The starting point in the derivation of the elasticity law for beams is the Euler-Bernoulli

hypothesis,

ε(z) = ε◦ + zκ (4.23)

and the one-dimensional Hook law, Eq.(4.1), and the definition of the bending moment and

axial force in the beam, Eqs.(3.36a-3.36c). Let’s calculate first the axial force N

N =

∫
A
σxx dA =

∫
A
Eεxx dA = E

∫
A

(ε◦ + zκ) dA

= E

∫
A
ε◦ dA+ E

∫
A
κz dA = Eε◦

∫
A

dA+ Eκ

∫
A
z dA

(4.24)

Note that the strain of the middle axis ε◦ and the curvature of the beam axis are independent

of the z-coordinate and could be brought in front of the respective integrals. Also Q =∫
A z dA is the static (first) moment of inertia of the cross-section. From the definition of

the neutral axis, Q = 0. The expression for the axial force reduces then to

N = EAε◦ (4.25)

where EA is called the axial rigidity of the beam. We calculate next the bending moment

in a similar way

N =

∫
A
σxxz dA =

∫
A
E(ε◦ + zκ)z dA

= Eε◦
∫
A
z dA+ Eκ

∫
A
z2 dA

(4.26)

Because the first term involving the static moment of inertia vanishes, and the expression

for the bending moment becomes

M = EIκ (4.27)

where EI is called the bending rigidity and

I =

∫
A
z2 dA (4.28)

is the second moment of inertia. For the rectangular cross-section (b× h)

I =
bh3

12
(4.29)

The significance of the above derivation is that the bending response is uncoupled from the

axial response and vice versa. This property allows to derive the famous stress formula for

beams. This is indeed one line derivation

σ = Eε = E(ε◦ + zκ) = E

(
N

EA
+
Mz

EI

)
σ(z) =

N

A
+
Mz

I
(4.30)
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η 

N/A 
M

I
z σ(z) 

Figure 4.5: Linear distribution of stresses along the height of the beam.

Both axial force and bending moment contribute to the stress distribution along the along

the height of the beam, as illustrated in Fig.(4.5).

From Eq.(4.30) one can calculate the point z = η where the stresses become zero

η = − I
A

N

M
= −ρ2 N

M
(4.31)

where ρ is the moment of giration of the cross-section defined by I = ρ2A. The position of

the zero stress axis depends on the ratio of axial force to bending moment. If η < h, where

h is the thickness of a rectangular section beam, the zero stress point is inside the beam

boundary, there is a bending dominated response. The tension dominated response is when

η is several times larger than h.

4.4 Inconsistencies in the Elementary Beam Theory

The equations presented in Section 3.6 under the ADVANCED TOPIC were derived without

any approximate assumption. In order for the beam to be in equilibrium, shear force V

must be present, when the beam is under pure bending (uniform bending over the length

of the beam). It is the shear stress σxz that give rise to the shear force, according to the

definition, Eq.(3.45). Therefore any inconsistencies must come from the strain-displacement

relations as well as constitutive equations, where some approximations were introduced.

The presence of the shear stresses σxz = σ13 means that shear strains ε13 = εxz must

develop according to Eq.(4.16).

εxz(z) =
σxz(z)

2G
(4.32)

The shear strain is defined as

εxz =
1

2

(
∂ux
∂z

+
∂uz
∂x

)
(4.33)

The Euler-Bernoulli assumption tells us that the shear strain vanishes. Then, Eq.(4.32) is

violated because the LH is zero while the RH is not. Suppose for a while that εxz = 0.

Then
∂ux
∂z

= −∂w(x)

∂x
= −θ(x) (4.34)

where uz = w(x) is independent of the coordinate z. Integrating Eq.(4.34) one gets

ux(z) = u◦ − zθ (4.35)
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which is equivalent to the plane-remain-plane and normal-remain-normal hypothesis, intro-

duced in Lecture 2. Assume now that the out-of-plane strain is a certain given function of

z. Performing the integration of Eq.(4.32) in a similar way as before, one gets

ux(z) = u◦ − zθ +

∫
εxz(z) dz (4.36)

It transpires from the above results that deformed section are not flat but are warped

instead. The amount of warping is given by the third term in Eq.(4.36).

Can we estimate the amount of warping? Yes, but we have to go ahead of the presented

material and quota the solution for the deflected slope θ of the beam. Le’s settle on the

simplest case of a clamped cantilever beam loaded at its tip by the point force P

θ =
Pl2

2EI
(4.37)

This solution will be derived in Lecture 5.

Figure 4.6: Warping of the end section of the cantilever beam.

Another result needed is the distribution of shear stresses across the height of the beam.

For the rectangular section beam (b× h), the shear stress is a parabolic function of z

σxz(z) =
3

2

P

A

[
1− z2

(h/2)2

]
(4.38)

The corresponding strain is calculated from Eq.(4.32). Assume that there is no axial force,

N = 0, so from Eq.(4.25) ε◦ = 0 and u◦ = 0. After integration, the displacement profile

defined by Eq.(4.36) becomes

ux(z) = − Pl
2

2EI
z +

1

2ε

3

2

P

A

[
z − z3

3(h/2)2

]
(4.39)

In order to quantify the correction of the displacement field due to warping, let’s calculate

the maximum values of the two terms at z = −h
2

. The first term arising from the Euler-

Bernoulli assumption gives

uI
x(z = −h

2
) =

ρl2

2EI

h

2
(4.40)
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The second correction term is

uII
x (z = −h

2
) =

1

2G

P

A

h

2
(4.41)

The ratio of the two terms is ∣∣∣∣uII
x

uI
x

∣∣∣∣ =
E

2G

I

Al2
=

E

2G

(ρ
l

)2
(4.42)

where ρ is the radius of giration of the cross-section. For a rectangular cross-section (b×h),

ρ2 =
I

A
=

bh3

12bh
=
h2

12
(4.43)

The ratio E/2G is
E

2G
=

E

2
E

2(1 + ν)

= (1 + ν) (4.44)

Then, the relative amplitude of warping from Eq.(4.42) is

uII
x

uI
x

=
1 + ν

12

(
h

l

)2

(4.45)

For a typical beam with
l

h
= 20, the above ratio becomes 0.25×10−3!!! In order to compare

the plane and wrapped cross-section, the amount of warping had to be magnified thousand

times, see Fig.(4.6). It can be concluded that the effect of warping is of an order of 0.1 %

and can be safely neglected in the engineering beam theory. In other words the “rein” of

the Euler-Bernoulli assumption is unchallenged.

Another inconsistency of the elementary beam theory is that the uniaxial stress gives

rise to the tri-axial strain state. In particular, from the 3-D constitutive equation, the strain

components

εyy = εzz = − ν
E
σxx (4.46)

Let’s take as an example the same cantilever beam with a tip load. The bending moment

at root of the beam is M = Pl, and from the stress formula,

σxx =
Pl

I
z (4.47)

From the definition εyy =
duy
dy

, and after integrating with respect to y, one gets

uy = −Plν
IE

zy (4.48)

The maximum displacement occurs at z =
h

2
and y =

b

2
. Making use of the beam deflection

formula (see Lecture 5)

δ =
Pl3

3EI
or

Pl

EI
=

3δ

l2
(4.49)
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the formula for the maximum displacement of a beam, normalized with respect to the beam

thickness becomes
(uy)max

h
=

3

4
ν

(
δ

h

)(
h

l

)2

(4.50)

What is the range of the normalized beam deflections δ? The beam deflects elastically until

the most stressed fibers reach yield of the materials, σxx
∣∣
z=h

2
= σy.

Then, from the stress formula

σy =
Pl

I

h

2
(4.51)

Combining the above expression with the beam deflection formula, Eq.(4.49), the estimate

for the maximum elastic tip displacement

δ

h
=

2

3

σy
E

(
l

h

)2

(4.52)

Combining Eqs.(4.50) and (4.52), the expression for the maximum normalized displacement

of the corner of the cross-section becomes

(uy)max

h
=
ν

2

σy

E
(4.53)

With realistic values ν =
1

3
and

σy

E
= 10−3, the amount of maximum change of the width of

the beam is 0.1 % of the beam height. Such a tiny change in the cross-sectional dimension

has no practical effect on the beam solution. A similar analysis can be performed to estimate

the change in the height of the beam.

When the signs of z and y coordinates is properly taken into account, the present

calculations predict the following change in the shape of the cross-section.

(uy)max 

x 

y 

Figure 4.7: Predicted (left) and actual “anticlastic” deformed cross-section of the beam subjected to pure

bending. Note that the deflections were magnified by a factor of 104.

The anticlastic deformation can be easily seen by bending a rubber eraser, which is a

very short beam. We can conclude the present section that the internal inconsistencies of the

beam theory do not produce any significant errors in engineering applications. Therefore,

one can safely assume that the cross-section of the beam does not deform and only moves

as a rigid body with the increasing beam deflections.
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ADVANCED TOPIC

4.5 Derivation of Constitutive Equations for Plates

For convenience, the set of equations necessary to derive the elasticity law for plates is

summarized below.

Hook’s law in plane stress reads:

σαβ =
E

1− ν2
[(1− ν)εαβ + νεγγδαβ] (4.54)

In terms of components:

σxx =
E

1− ν2
(εxx + νεyy) (4.55a)

σyy =
E

1− ν2
(εyy + νεxx) (4.55b)

σxy =
E

1 + ν
εxy (4.55c)

Here, strain tensor can be obtained from the strain-displacement relations:

εαβ = ε◦αβ + zκαβ (4.56)

Now, define the tensor of bending moment:

Mαβ ≡
∫ h

2

−h
2

σαβz dz (4.57)

and the tensor of axial force (membrane force):

Nαβ ≡
∫ h

2

−h
2

σαβ dz (4.58)

Bending Moments and Bending Energy

The bending moment Mαβ is now calculated by substituting Eq.(4.54) with Eq.(4.57)

Mαβ =
E

1− ν2

∫ h
2

−h
2

[(1− ν)εαβ + νεγγδαβ]z dz

=
E

1− ν2
[(1− ν)ε◦αβ + νε◦γγδαβ]

∫ h
2

−h
2

z dz

+
E

1− ν2
[(1− ν)καβ + νκγγδαβ]

∫ h
2

−h
2

z2 dz

=
Eh3

12(1− ν2)
[(1− ν)καβ + νκγγδαβ]

(4.59)
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Note that the term

∫ h
2

−h
2

z dz is zero, as shown in the case of beams. Therefore there are no

mid-surface strains ε◦αβ entering the moment-curvature relation.

Here we define the bending rigidity of a plate D as follows:

D =
Eh3

12(1− ν2)
(4.60)

Now, one gets the moment-curvature relations in the tensorial form

Mαβ = D[(1− ν)καβ + νκγγδαβ] (4.61)

Mαβ =

∣∣∣∣∣ M11 M22

M21 M22

∣∣∣∣∣ (4.62)

where M12 = M21 due to symmetry. In the expanded notation,

M11 = D(κ11 + νκ22) (4.63a)

M22 = D(κ22 + νκ11) (4.63b)

M12 = D(1− ν)κ12) (4.63c)

One-dimensional Bending Energy Density

Here, we use the hat notation for a function of certain argument, such as:

M11 = M̂11(κ11)

= Dκ11

(4.64)

Then, the bending energy density Ũb reads:

Ūb =

∫ κ̄

0
M̂11(κ11) dκ11

= D

∫ κ̄11

0
κ11 dκ11

=
1

2
D(κ̄11)2

(4.65)

Ūb =
1

2
M11κ̄11 (4.66)

General Case

General definition of the bending energy density reads:

Ūb =

∮
Mαβ dκαβ (4.67)
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κ11 

M11 

dκ11 

D 

κ11 

κ22 

κ 

Figure 4.8: In one dimension the energy density is the area under the linear moment-curvature plot. In

the multi-axial case the final value can be reached along the straight or nonlinear path.

where the symbol
∮

denotes integration along a certain loading path.

Let’s calculate the energy density stored when the curvature reaches a given value κ̄αβ
along a straight loading path:

καβ = ηκ̄αβ (4.68a)

dκαβ = κ̄αβdη (4.68b)

Mαβ 

καβ 
καβ 

η = 1 Mαβ 

η = 0 

η 

Figure 4.9: The straight loading path in the 3-dimensional space of bending moments..

From the linearity of the moment-curvature relation, Eq.(4.61), it follows that

Mαβ = M̂αβ(καβ)

= M̂αβ(ηκ̄αβ)

= ηM̂αβ(κ̄αβ)

(4.69)
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where M̂αβ(καβ) is a homogenous function of degree one.

Ūb =

∮
M̂αβ(καβ) dκαβ

=

∫ 1

0
ηM̂αβ(κ̄αβ)κ̄αβ dη

= M̂αβ(κ̄αβ)κ̄αβ

∫ 1

0
η dη

=
1

2
M̂αβ(κ̄αβ)κ̄αβ

=
1

2
Mαβκ̄αβ

(4.70)

Now, the bending energy density reads

Ūb =
D

2
[(1− ν)κ̄αβ + νκ̄γγδαβ]κ̄αβ

=
D

2
[(1− ν)κ̄αβκ̄αβ + νκ̄γγ κ̄αβδαβ]

=
D

2
[(1− ν)κ̄αβκ̄αβ − ν(κγγ)2]

(4.71)

The bending energy density expressed in terms of components are:

Ūb =
D

2
{(1− ν)[(κ̄11)2 + 2(κ̄12)2 + (κ̄22)2] + ν(κ̄11 + κ̄22)2}

=
D

2
{(1− ν)[(κ̄11 + κ̄22)2 − 2κ̄11κ̄22 + 2(κ̄12)2] + ν(κ̄11 + κ̄22)2}

=
D

2
{(κ̄11 + κ̄22)2 − 2κ̄11κ̄22 + 2(κ̄12)2 − ν[−2κ̄11κ̄22 + 2(κ̄12)2]}

=
D

2
{(κ̄11 + κ̄22)2 − 2κ̄11κ̄22 + 2(κ̄12)2 − ν[−2κ̄11κ̄22 + 2(κ̄12)2]}

=
D

2
{(κ̄11 + κ̄22)2 + 2(1− ν)[−κ̄11κ̄22 + (κ̄12)2]}

(4.72)

Ūb =
D

2

{
(κ̄11 + κ̄22)2 − 2(1− ν)

[
κ̄11κ̄22 − (κ̄12)2

]}
(4.73)

The term in the square brackets is the Gaussian curvature, κG, introduced in Lecture 2,

Eq.(2.62). Should the Gaussian curvature vanish, as it is often the case in plates, then the

bending energy density assumes a very simple form Ūb = 1
2D(κ̄11 + κ̄22)2.

Total Bending Energy

The total bending energy is the integral of the bending energy density over the area of plate:

Ub =

∫
S
Ūb dA (4.74)
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Membrane Forces and Membrane Energy

The axial force can be calculated in a similar way as before

Nαβ =
E

1− ν2

∫ h
2

−h
2

[(1− ν)εαβ + νεγγδαβ] dz

=
E

1− ν2

∫ h
2

−h
2

[(1− ν)ε◦αβ + νε◦γγδαβ] dz

+
E

1− ν2

∫ h
2

−h
2

[(1− ν)καβ + νκγγδαβ]z dz

=
E

1− ν2
[(1− ν)ε◦αβ + νε◦γγδαβ]

∫ h
2

−h
2

dz

+
E

1− ν2
[(1− ν)καβ + νκγγδαβ]

∫ h
2

−h
2

dz

=
Eh

1− ν2
[(1− ν)ε◦αβ + γε◦γγδαβ]

(4.75)

The integral

∫ h
2

−h
2

z dz is zero which means that there is no coupling between the membrane

force and curvatures.

Here we define the axial rigidity of a plate C as follows:

C =
Eh

1− ν2
(4.76)

Now, one gets the membrane force-extension relation in the tensor notation:

Nαβ = C[(1− ν)ε◦αβ + νε◦γγδαβ] (4.77)

Nαβ =

∣∣∣∣∣ N11 N12

N21 N22

∣∣∣∣∣ (4.78)

where N12 = N21 due to symmetry. In components,

N11 = C(ε◦11 + νε◦22) (4.79a)

N22 = C(ε◦22 + νε◦11) (4.79b)

N12 = C(1− ν)ε◦11 (4.79c)

Membrane Energy Density

Using the similar definition used in the calculation of the bending energy density, the

extension energy (membrane energy) reads:

Ūm =

∮
Nαβ dε◦αβ (4.80)
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Let’s calculate the energy stored when the extension reaches a given value ε̄◦αβ. Consider a

straight path:

ε◦αβ = ηε̄◦αβ (4.81a)

dε◦αβ = ε̄◦αβ dη (4.81b)

Nαβ = N̂αβ(ε◦αβ)

= N̂αβ(ηε̄◦αβ)

= ηN̂αβ(ε̄◦αβ)

(4.82)

where N̂αβ(ε◦αβ) is a homogenous function of degree one.

Ūm =

∫ ε̄◦αβ

0
N̂αβ(ε◦αβ) dε◦αβ

=

∫ 1

0
ηN̂αβ(ε̄◦αβ)ε̄◦αβ dη

=
1

2
N̂αβ(ε̄◦αβ)ε̄◦αβ

=
1

2
Nαβ ε̄

◦
αβ

(4.83)

Now, the extension energy reads:

Ũm =
C

2
[(1− ν)ε̄◦αβ + νε̄◦γγδαβ]ε̄◦αβ

=
C

2

[
(1− ν)ε̄◦αβ ε̄

◦
αβ + ν(ε̄◦γγ)2

] (4.84)

The extension energy density expressed in terms of components is:

Ūm =
C

2

{
(1− ν)

[
(ε̄◦11)2 + 2(ε̄◦12)2 + (ε̄◦22)2

]
+ ν(ε̄◦11 + ε̄◦22)2

}
=
C

2

{
(1− ν)

[
(ε̄◦11 + ε̄◦22)2 − 2ε̄◦11ε̄

◦
22 + 2(ε̄◦12)2

]
+ ν(ε̄◦11 + ε̄◦22)2

}
=
C

2

{
(ε̄◦11 + ε̄◦22)2 − 2ε̄◦11ε̄

◦
22 + 2(ε̄◦12)2 − ν

[
−2ε̄◦11ε̄

◦
22 + 2(ε̄◦12)2

]}
=
C

2

{
(ε̄◦11 + ε̄◦22)2 + 2(1− ν)

[
−ε̄◦11ε̄

◦
22 + (ε̄◦12)2

]}
(4.85)

Ūm =
C

2

{
(ε̄◦11 + ε̄◦22)2 − 2(1− ν)

[
ε̄◦11ε̄

◦
22 − (ε̄◦12)2

]}
(4.86)

The total membrane energy is the integral of the membrane energy density over the area of

plate:

Um =

∫
S
Ūm dS (4.87)

END OF ADVANCED TOPIC
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4.6 Stress Formula for Plates

In the section on beams, it was shown that the profile of axial stress can be determined

from the known bending moment M and axial force N , see Eq. (4.30). A similar procedure

can be developed for plates by comparing Eqs (4.61-4.77) with Eq. (4.54). The stress-strain

curve for the plane stress can be expressed in terms of the middle surface strain tensor ε◦αβ
and curvature tensor καβ by combining Eqs. (4.54) and (4.56).

σαβ =
E

1− ν2
[(1− ν)ε◦αβ + νε◦γγδαβ]

+
E

1− ν2
[(1− ν)καβ + νκγγδαβ]z

(4.88)

From the moment-curvature relation, Eq. (4.61):

(1− ν)καβ + νκγγδαβ =
Mαβ

D
(4.89)

Similarly, from Eq. (4.72)

(1− ν)ε◦αβ + νε◦γγδαβ =
Nαβ

C
(4.90)

where D =
Eh3

12(1− ν2)
is the bending rigidity, and C =

Eh

1− ν2
is the axial rigidity of the

plate.

From the above system, one gets

σαβ =
Ez

1− ν2

Mαβ

D
+

E

1− ν2

Nαβ

C
(4.91)

or using the definitions of D and C

σαβ =
Nαβ

h
+
zMαβ

h3/12
(4.92)

The above equation is dimensionally correct, because both Nαβ and Mαβ are respective

quantities per unit length. In particular stress in the case of cylindrical bending is

σxx =
Nxx

h
+
zMxx

h3/12
(4.93)

Multiplying both the numerators and denominators of the two terms above by b yields

σxx =
Nxxb

hb
+
zMxxb

bh3/12
(4.94)

Now, observing that Nxxb = N is the beam axial force, bMxx = M is the beam bending

moment, hb = A is the cross-section of the rectangular section beam, and
bh3

12
is the moment

of inertia, the familiar beam stress formula is obtained

σ =
N

A
+
Mz

I
(4.95)
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