
Structural Mechanics 2.080 Lecture 7 Semester Yr

Lecture 7: Bending Response of Plates and

Optimum Design

7.1 Beam Deflection Equation

The three group of equations for the plate bending problem, formulated in Lecture 2, 3 and

4 are:

Geometry καβ = −w,αβ (7.1)

Equilibrium Mαβ,αβ + p = 0 (7.2)

Elasticity law Mαβ = D[(1− ν)καβ + νκγγδαβ] (7.3)

Eliminating καβ between Eqs. (7.1) and (7.2)

Mαβ = D[(1− ν)w,αβ + νw,γγδαβ] (7.4)

and substituting the result into Eq. (7.3) gives

D[(1− ν)w,αβ + νw,γγδαβ],αβ + p = 0 (7.5)

The second term in the brackets is non-zero only when α = β. Therefore Eq. (7.4) trans-

forms to

Dw,ααββ [−1 + ν − ν] + p = 0 (7.6)

or finally

Dw,ααββ = p (7.7)

Introducing the definition of Laplacian ∇2 and bi-Laplacian ∇4 in the rectangular co-

ordinate system,

∇2 =
∂2

∂x2
+

∂2

∂y2
, ∇4 = ∇2∇2 (7.8)

an alternative form of Eq. (7.6) is

D∇4w = p (7.9)

This is a linear inhomogeneous differential equation of the fourth order. The boundary

conditions in the local coordinate system were given by Eq. (3.84).

A separate set of equations must be stetted for the in-plane response of the plate

Geometry ε◦αβ =
1

2
(uα,β + uβ,α) (7.10)

Equilibrium Nαβ,β = 0 (7.11)

Elasticity Nαβ = C[(1− ν)ε◦αβ + νε◦γγδαβ] (7.12)
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Eliminating the strains ε◦αβ and membrane force Nαβ between the above system, one gets

two coupled partial differential equations of the second order for uα (u1, u2).

(1− ν)uα,ββ + (1 + ν)uβ,αβ = 0 (7.13)

Such system is seldom solved, because in practical application constant membrane forces

are considered.

In either case the in-plane and out-of-plane response of plates is uncoupled in the classi-

cal, infinitesimal bending theory of plates. These two system are coupled through the finite

rotation term Nαβw,αβ. The extended governing equation in the theory of moderately large

deflection is

D∇4w +Nαβw,αβ = 0 (7.14)

The above equation will be re-derived and solved for few typical loading cases in Lecture

10. The analysis of the differential equation (7.9) in the classical bending theory of plates

along with exemplary solutions can be found in the lecture notes of the course 2.081 plates

and shells. In this section we will look into the bending problem of circular plates, which is

governed by the linear ordinary differential equation.

7.2 Deflections of Circular Plates

The governing equation (7.9) still holds but the Laplace operator ∇2 should now be defined

in the polar coordinate system (r, θ)

∇2w =
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2
(7.15)

In the circular plate subjected to axi-symmetric loading p = p(r), the third term in Eq.

(7.15) vanishes and the Laplace operator can be put in the form

∇2w =
∂2w

∂r2
+

1

r

∂w

∂r
=

1

r

d

dr

(
r

dw

dr

)
(7.16)

With the above definition, the plate bending equation becomes

1

r

d

dr

{
r

d

dr

[
1

r

d

dr

(
r

dw

dr

)]}
=
p(r)

D
(7.17)

and the solution is obtained by four successive integration

w(r) =

∫
1

r

∫
r

∫
1

r

∫
rp(r)

D
dr dr dr dr (7.18)

Assuming a uniform loading of the intensity po, the above integration can be easily per-

formed to give

w(r) = C1 ln r + C2r
2 + C3r

2 ln r + C4 +
por

4

64D
(7.19)
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As an illustration, consider clamped boundary conditions:

at r = R w = 0 and
dw

dr
= 0 (7.20a)

at r = 0
dw

dr
= 0 and V̄r = 0 (7.20b)

where the shear force (per unit length), acting on a plate element at a distance r is

Vr = − 1

2πr

∫ r

0
po2πr dr = −por

2
(7.21)

The two terms in Eq. (7.19) involving logarithms tend to infinity at r → 0. Therefore, in

order for the solution to give finite values of deflections at the center, C1 = C3 = 0. Now,

the expression for the slope is
dw

dr
= 2C2r +

por
3

18D
(7.22)

Now, the boundary conditions at r = 0 are satisfied identically. From two boundary condi-

tions at r = R, one finds the integration constants

C2 = −poR
2

32D
, C4 =

poR
4

64D
(7.23)

The final form of the solution for the plate deflection is

w(r) =
poR

4

64D

[
1−

( r
R

)2]2
(7.24)

For comparison, the solution for the simply supported plate will be derived. The bound-

ary conditions are mixed so the moment-curvature relation must be used

Mr = D

[
d2w

dr2
+ ν

1

r

dw

dr

]
(7.25a)

Mθ = D

[
1

r

dw

dr
+ ν

d2w

dr2

]
(7.25b)

where the definition of moments in the cylindrical coordinate system was used. At the plate

edge

w = 0 and Mr = 0 at r = R (7.26)

From Eqs. (7.19), (7.25) and (7.26), the system of two algebraic equations for C2 and

C4 is obtained, where solution is

C2 = −poR
2

32D

3 + ν

1 + ν
, C4 =

poR
4

64D

5 + ν

1 + ν
(7.27)

The formula for the plate deflection is

w(r) =
pR4

64D

[( r
R

)4
− 2

( r
R

)2 3 + ν

1 + ν
+

5 + ν

1 + ν

]
(7.28)
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The ratio of the maximum deflection of the simply supported and clamped plate at r = 0

is
wsimplysupported

wclamped
=

5 + ν

1 + ν
≈ 4 (7.29)

It is interesting that a similar ratio for beams is exactly 5.

wo 
1 4 

1 

Clamped 

Simply supported 

poR
2

64D

Figure 7.1: Clamped plate is four times stiffer than the simply supported circular plate.

The clamped circular plate can leave at a prototype of the whole family of similar plates.

It is therefore of interest to explore the properties of the above solution further. From Eq.

(7.24) the radial and circumferential curvatures are:

κr = −d2w

dr2
=
poR

2

16D

(
1− 3r2

R2

)
(7.30a)

κθ = −1

r

dw

dr
=
poR

2

16D

(
1− r2

R2

)
(7.30b)

From the constitutive equations, the radial and circumferential bending moments are

Mr = D[κr + νκθ] +
poR

2

16

[
(1 + ν)− (3 + ν)

( r
R

)2]
(7.31a)

Mθ = D[κθ + νκr] +
poR

2

16

[
(1 + ν)− (1 + 3ν)

( r
R

)2]
(7.31b)

At the plate center, by symmetry

Mr = Mθ = (1 + ν)
poR

2

16
(7.32)

Another extreme value occurs at the clamped edge

Mr =
poR

2

8
, Mθ = −ν poR

2

8
at r = R (7.33)

By comparing Eqs. (7.32) and (7.33), it is seen that the maximum bending moment occurs

at the edge r = R. From the stress formula, Eq. (4.92)

|σrr| =
∣∣∣∣
Mrz

h3/12

∣∣∣∣
z=h

2

= po
3

4

(
R

h

)2

(7.34)
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At the same time, the circumferential bending moment at r = R is

|σθθ| =
Mθz

h3/12
= po

1

4

(
R

h

)2

(7.35)

σr σθ 
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2
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Base for simply supported edge 

σθ 

σr 

�poR
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4t2

�3poR
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4t2

Figure 7.2: Variation of radial and circumferential stresses along the radius of the plate.

7.3 Equivalence of Square and Circular Plates

In the section of Lecture 7 on stiffened plates, the analogy between the response of circular

and square plates was exploit to demonstrate the effectiveness of stiffeners. It was stated

that stiffness of these two types of plates are similar if the arial surface was identical. We

are now in the position to assess accuracy of the the earlier assertion.

Consider a clamped square plate 2a×2a, uniformly loaded by the pressure po. The total

potential energy of the system Π is

Π =
D

2

∫

S

[
(κ2x + κ2y) + 2(1− ν)κG

]
ds−

∫

S
−qow ds (7.36)

It can be shown (Shames & Dign 1985) that for the fully clamped boundary conditions, the

integral of the Gaussian curvature κG vanishes. The expression for Π simplifies to

Π =
D

2

∫ a

0

∫ a

0

[
d2w

dx2
+

d2w

dy2

]
dx dy − a2q

∫ a

0

∫ a

0
w dx dy (7.37)

For simplicity only one quarter of the plate is considered with the origin at the plate

center. As a trial deflection shape, we assume

w(x, y) = C(x2 − a2)2(y2 − a2)2 (7.38a)

dw

dx
= C2(x2 − a2)2x(y2 − a2)2 (7.38b)

dw

dy
= C(x2 − a2)22(y2 − a2)2y (7.38c)
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It is seen that both the deflections and slopes are zero at the clamped boundary. Further-

more, the slopes at the plate center x = y = 0 vanishes, as they should due to symmetry.

The maximum amplitude is at center and is equal to Ca8 = wo. Thus, the kinematic

boundary conditions are satisfied identically for any value of the unknown constant C.

Substituting the expression (7.38) into Eq. (7.37) and performing integration yields

Π = 9a4DC2 − 0.384qoC (7.39)

According to the Ritz method, equilibrium is maintained if

δΠ =
∂Π

∂C
δC = 0 (7.40)

This means that for a given load intensity and the assumed normalized shape function, the

true deflection amplitude is chosen by the condition

∂Π

∂C
= 0 or 18a4DC − 0.383qo = 0 (7.41)

Having found the amplitude C, the load-displacement relation of the square plate becomes

wo =
poa

4

47D
(7.42)

The corresponding solution for the clamped circular plate is

wo =
poR

4

64D
(7.43)

The stiffnesses of both plates are identical if
R4

64
=
a4

47
or if a = 0.92R. The area equivalence

4a2 = πR2 gives a similar result a = 0.88R. For simplicity in the qualitative analysis

throughout the present lecture notes one can approximately assume a = R. The difference

between the exact and approximate solution from the area and stiffness equivalence does

exist, but it is small. It is interesting that the approximate solution obtained by the Ritz

method is very close to the exact series solution where the coefficient 47 in Eq. (7.42) should

be replaced by 49.5.

7.4 Design Concept for Plates

The plates loaded in the transverse direction can be design for:

• Stiffness

• Strength(yielding or plastic collapse)

• fracture
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Plastic collapse and fracture of ductile materials will be covered in separate lectures.

Stiffness is a global property of the plate and is the ratio of force to displacement. For a

uniformly loaded plate the stiffness is defined as

K =
πR2po
wo

(7.44)

For the clamped plate with ν = 0.3

K = 18.5 ≡ h3

R2

[
N

m

]
(7.45)

Stiffness can be controlled by choosing a suitable material (E), thickness (h) and distance

between support (R). The boundary conditions enter through the numerical coefficient. The

concept of optimum design includes the weight and cost of a given structure. Leaving the

complex issue of cost, the wight can be easily included by calculating stiffness per unit

weight. The wight of the circular plate W = πR2ρ, so the stiffness per unit weight is

K̄ =
K

W
=

πR2po
πR2ρwo

=
po
ρwo

(7.46)

In the case of a clamped plate

K̄ = 4.8
E

ρ

h2

R4

[
N

mKg

]
(7.47)

The dependance of K and K̄ on h and R is different. While the stiffness favors thicker

plates, the stiffness per unit weight increases faster with a large radius. The effect of the

ratio E/ρ can be shown on the example of steel and aluminum plates, see Table (7.1).

Table 7.1: Basic properties of steel and aluminum

E[GPa] ρ[g/cm3] E/ρ

Steel 2.1 7.8 3.7

Al 0.8 2.8 3.5

Aluminum alloys seem much lighter but they lose elasticity modulus in the same pro-

portion. It is seen that there are not much gain in the stiffness per unit weight by replacing

steel by aluminum. So, what else could be done to increase plate stiffness? The answer is:

• Sandwich plates

• Stiffened plates

Each of the above concept is studied separately.
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Face 
plates 

Core H 

h1 

h2 

Figure 7.3: There are two materials and three different thicknesses in sandwich plates.

7.5 Sandwich Plates

Sandwich plates are composed of face sheets and a lightweight core, Fig. (7.3).

The core is transmitting shear stresses while the face plates are working mostly in

tension or compression. Typical materials for a core are polyuritine foam, Aluminum foam,

aluminum or nomex honeycombs, polymeric material of various kinds etc. In many steel

structures, there is a discrete core made of corrugated sheets welded stiffeners of different

topologies or truss structures. Pictures of some typical core materials and sandwich sets

are shown in Fig. (7.4).

In order to determine the bending and axial stiffness of the sandwich plate, we must

revisit the definition of bending moment. For cylindrical bending,

Mxx =

∫
σz dz =

∫ H
2

−H
2

σcz dz + σfhH (7.48a)

Nxx =

∫
σ dz =

∫ H
2

−H
2

σc dz + 2σfh (7.48b)

The Young’s modulus of the core material is usually two orders of magnitude smaller than

that of the face plates, so σf � σc. Neglecting the first term in Eq. (7.48) and extending

the above definitions to plates, the bending moments and axial forces are

Mαβ = σαβhH (7.49a)

Nαβ = 2σαβh (7.49b)

where σαβ is related to the face plate strain by the plane stress elasticity law, Eqs. (4.54-

4.56).

The Love-Kirchhoff hypothesis is still valid so the strains in the face plates are

εαβ = ε◦αβ ±
H

2
καβ (7.50)

where the “±” sign apply to the tensile and compressive side of the panel. The resulting

moment-curvature relations become

Mαβ = Ds[(1− ν)καβ + νκγγδαβ] (7.51a)

Nαβ = Cs[(1− ν)ε◦αβ + νεγγδαβ] (7.51b)
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where the bending and axial rigidities of the sandwich plates are

Ds =
EhH2

(1− ν2) ; Cs =
EhH

1− ν2 (7.52)

Now, there is more room for the optimum design, because instead of a thickness of a

monolithic plate, we have two geometrical parameter to play with. Replacing the bending

rigidity D of the monolithic plate by Eq. (7.52), the bending stiffness of the circular

sandwich plate become

Ks = 222E
hH2

R2
(7.53)

Assuming the mass density of the core to be two orders of magnitude smaller than the face

plate, the total wight of the sandwich plate is

Ws = πR22hρ (7.54)

Then, the formula for the bending stiffness per unit weight is

K̄s = 35
E

ρ

H2

R4

[
N

mKg

]
(7.55)

Two observations can be made. First, Ks is independent on the thickness of face-plates.

Secondly, the stiffness per unit weight increases parabolically with the core thickness H.

Does it mean that one can make Ks as large as desired by increasing H? This is too good

to be true. With increasing H, the sandwich plate may fail in either of the three failure

modes:

(i) Yielding or fracture of face plate on the tensile side;

(ii) Face plate buckling on the compressive side;

(iii) Delamination due to excessive shear.

None of these failure modes are present in monolithic plates. It can be concluded that

sandwich plates bring substantial improvements in the bending stiffness but at the same

time introduces new unwanted features. Fracture, buckling and shear stresses will be the

subject of subsequent lecture. But even at this point we can say that optimization of

sandwich plates are possible by determining the maximum core thickness Hopt slightly less

than that causing one of the above failure modes.

7.6 Stiffened Plates

Another way of light weighting plates is to provide a system of uni-directional or orthogonal

stiffeners. As opposed to sandwich structures which are symmetric, stiffened plates are

asymmetric with the neutral axis positioned usually outside the profile of the plate. A

stiffened plates consists of a system of beams interacting with a uniform thickness plate.

Photos of typical stiffened plates used in civil engineering, ship buildings and other segment

of the economy are shown in Fig. (7.5).
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Figure 7.4: Pictures of foam-filled and honeycomb core sandwich plates and panels with

some applications.
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Figure 7.5: Stiffened panels are fundamental building blocks of modern structures.
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P b 

h H 

2a 

Figure 7.6: Geometry of the stiffened plate.

To illustrate the response of stiffened plates to transverse loads consider an example of

a simply supported plate stiffened by two cross-beams, Fig. (7.6).

The structure is loaded by a point force P at the center. For simplicity, shown is the

simplest flat bar stiffener but the analysis is valid for any beam defined by the moment

of inertia I. Can we determine the stiffness of the system using our existing knowledge of

beams and plates? Let’s see.

The solution for the beam problem is

w(x) = wb
o

x

l

[
3− 4

(x
l

)2]
(7.56a)

wb
o =

P bl3

48EI
(7.56b)

where l = 2a is the length of the stiffener. The solution for the circular plate under the

concentrated point load is given by Eq. (7.28)

w̄ =
w(r)

wp
o

=

[
2
(r
a

)2
ln
r

a
+

3 + ν

1 + ν

(
1−

(r
a

)2)]
(7.57a)

wp
o =

ppa2

16πD
(7.57b)

Here the analogy between the response of a circular and square plate was used with a ≈ R.

The comparison of the deflected shapes of the beam and the plate is shown in Fig. (7.7).

This means that in terms of vertical deflections w the beam shape fits on the deform plate.

What about the horizontal displacements? This is shown in Fig. (7.8). The beam and

the plate deform separately and there is an incompatibility of the displacement u. This

corresponds to the situation that both components are not connected, with sliding allowed.

Should sliding be prevented, for example by welding, the neutral axis of the plate-beam

combination will be shifted. Therefore the actual stiffness of the welded stiffen structure

will be greater than simply adding their individual contributions. The present model will

give only the lower bound. Let’s calculate the lower bound stiffness of the system.

The almost perfect compatibility of the vertical displacement, shown in Fig. (7.7),

means that we are dealing with two linear springs in parallel, Fig. (7.9). The total resisting

force is the sum of individual components, while the displacements are the same

P = Pp + Pb; wp
o = wb

o = wo (7.58)
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x

a

w̄

1 

0.5 

0.5 1.0 0 
or x

l/2

0.61 
plate 

0.69 beam 

Figure 7.7: Normalized deflected shapes of a beam and a plate is very similar.

Δu 

Figure 7.8: The length of the bent plate is the same as the beam axes. Relative displacement

at the interface is denoted by ∆u.

From Eqs. (7.56) and (7.57) one gets

P =

(
16πD

a2
+

6EI

a3

)
wo (7.59)

P 

Pb Pp 

Figure 7.9: Two spring in series.

If we assume for simplicity that the flat bar stiffener is of the same thickness as the

plate, b = h, then Eq. (7.59) simplifies to

P =
1

2
Ehwo

[
8π

3(1− ν2)

(
h

a

)2

+

(
H

a

)3
]

(7.60)
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To get a feel, the plate and beam will equally contribute to the stiffen of the system if

(
3h

a

)2

=

(
H

a

)3

(7.61)

For a typical plate with span to thickness ratio a/h = 30, the hight of the stiffener is

H ∼= 0.2a. How good the above lower bound solution is? This is a difficult question to

which no general and simple solution can be derived.

It is helpful to distinguish three limiting cases shown in Fig. (7.10). A very substantial

and sparsely positioned stiffeners acts as an almost rigid clamped support to the plate, case

(a). Light and densely distributed stiffeners, case (c), deform together with the plate. there

is one deflection line and stiffeners contribute to the bending stiffness of the plate. The

case (b) is a combination of the above two extreme cases. Cases (a) and (c) will be studied

below.

Figure 7.10: Heavy, intermediate and light stiffeners.

7.7 Plates versus Grillages

Case (a). Two heavy stiffeners are subdividing the square plate shown in Fig. (7.6) into four

smaller square plates. An example of this type of design is the “hungry horse” deformation

pattern of the ship hall, shown in Fig. (7.5b).

The point load is still applied at the intersection of both beams. The solution given by

Eq. (7.59) is still valid but now the beam stiffness is much higher than the plate bending

stiffness, and the first term in Eq. (7.59) can be neglected. The solution of two intersecting

beam, each carrying half of the load is exact. The stiffness of the beam system is

K|two beams =
P

wo
=

12EI

a3
=
EbH3

a3
(7.62)

while the plate stiffness from Eq. (7.57) is

K|plate =
16πD

a2
=

16πEh3

12a2(1− ν2)
1 + ν

3 + ν
(7.63)

7-14



Structural Mechanics 2.080 Lecture 7 Semester Yr

Two intersecting beams form the simplest grillage

The question is which of the two types of structures, plates or grillages are more weight

efficient? So, let’s keep the volume of both types of structures the same and compare their

stiffnesses.

Vplate = Vbeam → ah = bH (7.64)

The ratio of stiffnesses, keeping the volume (weight) the same is

Kbeams

Kplate
= 0.6

b

a

(
H

h

)3

= 0.6

(
H

h

)2

(7.65)

The stiffness of grillage is the same as that of the plate if H = 1.25h. Stiffeners alone or

their assemblages into a grillage can thus transmit considerable concentrated loads. They

cannot resist distributed pressure. For that purpose plates or stiffened plates must be used.

7.8 The Concept of Equivalent Thickness

Densely spaced and weak stiffeners follow the deflection line of the plate to which they are

attached. The main load-resisting mechanism is plate bending with an additional contri-

bution of stiffeners. The solution for the plate is still valid but the plate thickness must

be increased to form an equivalent thickness heq. In plate bending problem the equivalence

should be based on equal moment of inertia of two structures, Fig. (7.11).

H h 

2a 

heq 

2a 

Figure 7.11: Geometry of plate/beam combination and the equivalent thickness plate.

The integrated beam/stiffener system is bending about the common bending axis. The

equivalent plate is bending about the middle plane axis. The bending axis of any beam is

defined by vanishing the first moment of inertia of the cross-section

Q =

∫

A
z dA = 0 (7.66)

For simplicity, the flat bar stiffener is considered. The position of the neutral axis,

normalized with respect to the plate thickness, is related to the remaining parameters of

the problem by

η

h
=

1

2

1− b

a

(
H

h

)2

1 +
b

a

(
H

h

) (7.67)
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The plot of the function η/h versus the normalized hight of the stiffener H/h for several

values of the plate-to-stiffener aspect ratio a/b is shown in Fig. (7.12). In the limiting case

of no stiffener, H = 0 and the position of the neutral axis is at the middle axis of the plate.

10 5 

0.5 

-0.5 

-1.0 

-1.5 

-2.0 
10 

15 
20 
25 

⌘

h

a

b
= 40

0 
H

h

H h 

2a 

b 

η 

Figure 7.12: Neutral axis of the plate/beam combination moves from the plate center

towards the original axis of the beam.

The moment of inertia of the plate/beam combination and the equivalent plate are,

respectively

I =
2a

3

[
(h3 − 3h2η + 3hη2) +

b

2a
(H3 + 3H2η + 3Hη2)

]
(7.68a)

Ieq =
2a

12
h3eq (7.68b)

By equating the respective moments of inertia, the equivalent plate thickness, normalized

by the thickness of the un-stiffened plate is

(
heq
h

)3

= 4

{[
1− 3η + 3

(η
h

)2]
+

b

2a

[(
H

h

)2

+ 3

(
H

h

)2 η

h
+ 3

H

h

(η
h

)2
]}

(7.69)

The plot of heq/h versus H/h for several values of the a/b ratios is given in Fig. (7.13).

The growth of plate stiffness, according to Eq. (7.69), is parabolic with respect to
H

h
.

At the same time the increase in weight (volume) of the orthogonally stiffened plate is linear

Veq
V

= 1 +
b

a

H

h
(7.70)

Therefore the stiffness per unit weight will still be an increasing function of the height of

the stiffeners.

The next question is what should be the height H and spacing of stiffeners to fall under

the category (c) of light stiffeners. This question can be answered by explaining the concept

of the shear lag.

7-16



Structural Mechanics 2.080 Lecture 7 Semester Yr

3 5 7 10 0 
H

h

1 

6 

a

b
= 9 25 49 100 

✓
heq

h

◆3

Figure 7.13: The equivalent thickness growth rapidly with the height of the stiffener.

7.9 Shear Lag

The question is how to remove the incompatibility of in-plane displacements between the

beam and plate, shown in Fig. (7.8). Let’s magnify this figure to see what is happening at

the edge.

Beam axis 

Plate axis 
Δu 

a b c 

Beam axis 

Plate stretched 
Δu 

Common beam and 
plate axis 

Figure 7.14: Incompatible and compatible interface between beam (stiffener) and plate.

In Fig. (7.14a), the beam and the plate are bent separately about their respective

bending axes. One way of making the incompatible edge displacement to vanish, ∆u = 0,

would be to stretch the plate to match the tensile side of the beam. This will entail

considerable in-plane sheer stresses and strain on both sides of the foot of stiffener.

The finite region of the plate subjected to large in-plane shear is called the “effective

breath”. Most of literature dealing with bending of stiffened plates took the approach called

the shear lag. This approach is based on the continuity of shear forces and stresses at the

beam/plate interface. The determination of the effective breadth falls behind the scope of

the present lecture notes.
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Figure 7.15: In-plane shear induced by the stiffener is restricted to an immediate vicinity

of the stiffener.
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