
DRAFT V1.2

From

Math, Numerics, & Programming

(for Mechanical Engineers)

Masayuki Yano
James Douglass Penn
George Konidaris
Anthony T Patera

September 2012

© The Authors. License: Creative Commons Attribution-Noncommercial-Share Alike 3.0
(CC BY-NC-SA 3.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original authors and MIT OpenCourseWare source
are credited; the use is non-commercial; and the CC BY-NC-SA license is
retained. See also http://ocw.mit.edu/terms/.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://ocw.mit.edu/terms/

Contents

III Linear Algebra 1: Matrices and Least Squares. Regression. 199

15 Motivation	 201

16 Matrices and Vectors: Definitions and Operations	 203
16.1 Basic Vector and Matrix Operations . 203

16.1.1	 Definitions . 203
Transpose Operation . 204

16.1.2	 Vector Operations . 205
Inner Product . 207
Norm (2-Norm) . 207
Orthogonality . 211
Orthonormality . 212

16.1.3 Linear Combinations . 212
Linear Independence . 213
Vector Spaces and Bases . 214

16.2 Matrix Operations . 217
16.2.1	 Interpretation of Matrices . 217
16.2.2	 Matrix Operations . 218

Matrix-Matrix Product . 219
16.2.3	 Interpretations of the Matrix-Vector Product 222

Row Interpretation . 222
Column Interpretation . 223
Left Vector-Matrix Product . 223

16.2.4	 Interpretations of the Matrix-Matrix Product 224
Matrix-Matrix Product as a Series of Matrix-Vector Products 224
Matrix-Matrix Product as a Series of Left Vector-Matrix Products 225

16.2.5	 Operation Count of Matrix-Matrix Product 225
16.2.6	 The Inverse of a Matrix (Briefly) . 226

16.3 Special Matrices . 227
16.3.1	 Diagonal Matrices . 228
16.3.2	 Symmetric Matrices . 228
16.3.3	 Symmetric Positive Definite Matrices . 228
16.3.4	 Triangular Matrices . 230
16.3.5	 Orthogonal Matrices . 230
16.3.6	 Orthonormal Matrices . 232

16.4 Further Concepts in Linear Algebra . 233
16.4.1	 Column Space and Null Space . 233
16.4.2	 Projectors . 234

3

17 Least Squares	 237
17.1 Data Fitting in Absence of Noise and Bias . 237
17.2 Overdetermined Systems . 242

Row Interpretation . 243
Column Interpretation . 244

17.3 Least Squares . 245
17.3.1	 Measures of Closeness . 245
17.3.2	 Least-Squares Formulation (£2 minimization) 246
17.3.3	 Computational Considerations . 250

QR Factorization and the Gram-Schmidt Procedure 251
17.3.4	 Interpretation of Least Squares: Projection 253
17.3.5	 Error Bounds for Least Squares . 255

Error Bounds with Respect to Perturbation in Data, g (constant model) . . . 255
Error Bounds with Respect to Perturbation in Data, g (general) 256
Error Bounds with Respect to Reduction in Space, B 262

18 Matlab Linear Algebra (Briefly)	 267
18.1 Matrix Multiplication (and Addition) . 267
18.2 The Matlab Inverse Function: inv . 268
18.3 Solution of Linear Systems: Matlab Backslash . 269
18.4 Solution of (Linear) Least-Squares Problems . 269

19 Regression: Statistical Inference	 271
19.1 Simplest Case . 271

19.1.1	 Friction Coefficient Determination Problem Revisited 271
19.1.2	 Response Model . 272
19.1.3	 Parameter Estimation . 275
19.1.4	 Confidence Intervals . 277

Individual Confidence Intervals . 278
Joint Confidence Intervals . 279

19.1.5	 Hypothesis Testing . 284
19.1.6	 Inspection of Assumptions . 285

Checking for Plausibility of the Noise Assumptions 285
Checking for Presence of Bias . 286

19.2 General Case . 287
19.2.1	 Response Model . 287
19.2.2	 Estimation . 288
19.2.3	 Confidence Intervals . 289
19.2.4	 Overfitting (and Underfitting) . 290

4

Unit III

Linear Algebra 1: Matrices and Least
Squares. Regression.

199

Chapter 15

Motivation
DRAFT V1.2 © The Authors. License: Creative Commons BY-NC-SA 3.0 .

In odometry-based mobile robot navigation, the accuracy of the robot’s dead reckoning pose
tracking depends on minimizing slippage between the robot’s wheels and the ground. Even a
momentary slip can lead to an error in heading that will cause the error in the robot’s location
estimate to grow linearly over its journey. It is thus important to determine the friction coefficient
between the robot’s wheels and the ground, which directly affects the robot’s resistance to slippage.
Just as importantly, this friction coefficient will significantly affect the performance of the robot:
the ability to push loads.

When the mobile robot of Figure 15.1 is commanded to move forward, a number of forces come
into play. Internally, the drive motors exert a torque (not shown in the figure) on the wheels,
which is resisted by the friction force Ff between the wheels and the ground. If the magnitude of Ff
dictated by the sum of the drag force Fdrag (a combination of all forces resisting the robot’s motion)
and the product of the robot’s mass and acceleration is less than the maximum static friction force
F max between the wheels and the ground, the wheels will roll without slipping and the robot f, static
will move forward with velocity v = ωrwheel. If, however, the magnitude of Ff reaches F max , the f, static
wheels will begin to slip and Ff will drop to a lower level Ff, kinetic, the kinetic friction force. The
wheels will continue to slip (v < ωrwheel) until zero relative motion between the wheels and the
ground is restored (when v = ωrwheel).

The critical value defining the boundary between rolling and slipping, therefore, is the maximum

Fnormal, front Fnormal, rear

w

F f

v

Fdrag

W

Figure 15.1: A mobile robot in motion.

201

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

0 1 2 3 4 5 6 7 8
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

time (seconds)time (seconds)

FFfrictionfriction vs.vs. TimTimee forfor 500500 GrGramam LoadLoad

FFff,, kikinenetticic == µµkk FFnornormamall ++ expexperierimmenentaltal errorerror

FF
fr

ic
ti
o
n

fr
ic

ti
o
n

(N
ew

to
ns

)
(N

ew
to

ns
)

FFff,, statstaticic == FFtatangenngenttiaiall,, applappliedied ≤≤ µµss FFnornormamall

mmeaseas

 == µµss FFnornormamall ++ expexpeeririmmenentaltal errorerrorFFff,, statstaticic
mmax,ax, measmeas

Figure 15.2: Experimental setup for friction
measurement: Force transducer (A) is con- Figure 15.3: Sample data for one friction
nected to contact area (B) by a thin wire. measurement, yielding one data point for

F max, measNormal force is exerted on the contact area . Data courtesy of James Penn. f, static
by load stack (C). Tangential force is ap
plied using turntable (D) via the friction be
tween the turntable surface and the contact
area. Apparatus and photograph courtesy of
James Penn.

static friction force. We expect that

F max
f, static = µs Fnormal, rear , (15.1)

where µs is the static coefficient of friction and Fnormal, rear is the normal force from the ground on
the rear, driving, wheels. In order to minimize the risk of slippage (and to be able to push large
loads), robot wheels should be designed for a high value of µs between the wheels and the ground.
This value, although difficult to predict accurately by modeling, can be determined by experiment.

We first conduct experiments for the friction force F max (in Newtons) as a function of normal f, static
load Fnormal, applied (in Newtons) and (nominal) surface area of contact Asurface (in cm2) with the
friction turntable apparatus depicted in Figure 15.2. Weights permit us to vary the normal load and
“washer” inserts permit us to vary the nominal surface area of contact. A typical experiment (at a
particular prescribed value of Fnormal, applied and Asurface) yields the time trace of Figure 15.3 from
which the F max, means (our measurement of F max) is deduced as the maximum of the response. f, static f, static

We next postulate a dependence (or “model”)

F max
f, static(Fnormal, applied, Asurface) = β0 + β1 Fnormal, applied + β2 Asurface , (15.2)

where we expect — but do not a priori assume — from Messieurs Amontons and Coulomb that
β0 = 0 and β2 = 0 (and of course β1 ≡ µs). In order to confirm that β0 = 0 and β2 = 0 — or at
least confirm that β0 = 0 and β2 = 0 is not untrue — and to find a good estimate for β1 ≡ µs, we
must appeal to our measurements.

The mathematical techniques by which to determine µs (and β0, β2) “with some confidence”
from noisy experimental data is known as regression, which is the subject of Chapter 19. Regression,
in turn, is best described in the language of linear algebra (Chapter 16), and is built upon the linear
algebra concept of least squares (Chapter 17).

202

Chapter 16

Matrices and Vectors: Definitions and
Operations

16.1 Basic Vector and Matrix Operations

16.1.1 Definitions

Let us first introduce the primitive objects in linear algebra: vectors and matrices. A m-vector
v ∈ Rm×1 consists of m real numbers 1 ⎞ ⎛

v =
⎜⎜⎜⎜⎝

v1
v2
. . .
vm

⎟⎟⎟⎟⎠
.

It is also called a column vector, which is the default vector in linear algebra. Thus, by convention,
v ∈ Rm implies that v is a column vector in Rm×1 . Note that we use subscript (·)i to address the

∈ R1×ni-th component of a vector. The other kind of vector is a row vector v consisting of n
entries

v = v1 v2 · · · vn .

Let us consider a few examples of column and row vectors.

Example 16.1.1 vectors
Examples of (column) vectors in R3 are ⎛⎞⎛ √ ⎞⎛⎞

1 3 9.1
v = ⎜⎝ 3 ⎟⎠ , u = ⎜⎝ −7 ⎟⎠ , and w = ⎜⎝ 7/3√

⎟⎠ .
6 π π

1The concept of vectors readily extends to complex numbers, but we only consider real vectors in our presentation
of this chapter.

203

DRAFT V1.2 © The Authors. License: Creative Commons BY-NC-SA 3.0 .

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

√

To address a specific component of the vectors, we write, for example, v1 = 1, u1 = 3, and
w3 =

√
π. Examples of row vectors in R1×4 are

√ √
v = 2 −5 2 e and u = − π 1 1 0 .

Some of the components of these row vectors are v2 = −5 and u4 = 0.
·

A matrix A ∈ Rm×n consists of m rows and n columns for the total of m · n entries, ⎞⎛

A =
⎜⎜⎜⎜⎝

A11 A12 · · · A1n
A21 A22 · · · A2n
. . .

.
Am1 Am2 · · · Amn

⎟⎟⎟⎟⎠
.

Extending the convention for addressing an entry of a vector, we use subscript (·)ij to address the
entry on the i-th row and j-th column. Note that the order in which the row and column are
referred follows that for describing the size of the matrix. Thus, A ∈ Rm×n consists of entries

Aij , i = 1, . . . ,m, j = 1, . . . , n .

Sometimes it is convenient to think of a (column) vector as a special case of a matrix with only one
column, i.e., n = 1. Similarly, a (row) vector can be thought of as a special case of a matrix with
m = 1. Conversely, an m × n matrix can be viewed as m row n-vectors or n column m-vectors, as
we discuss further below.

Example 16.1.2 matrices
Examples of matrices are ⎛ √ ⎞⎛⎞

1 3 0 0 1 ⎜⎝ −4 9 ⎟⎠ and B = ⎜⎝ −2 8 1 ⎟⎠ A = .
π −3 0 3 0

The matrix A is a 3 × 2 matrix (A ∈ R3×2) and matrix B is a 3 × 3 matrix (B ∈ R3×3). We can √
also address specific entries as, for example, A12 = 3, A31 = −4, and B32 = 3.

·

While vectors and matrices may appear like arrays of numbers, linear algebra defines special
set of rules to manipulate these objects. One such operation is the transpose operation considered
next.

Transpose Operation

The first linear algebra operator we consider is the transpose operator, denoted by superscript (·)T .
The transpose operator swaps the rows and columns of the matrix. That is, if B = AT with
A ∈ Rm×n, then

Bij = Aji, 1 ≤ i ≤ n, 1 ≤ j ≤ m .

Because the rows and columns of the matrix are swapped, the dimensions of the matrix are also
swapped, i.e., if A ∈ Rm×n then B ∈ Rn×m .

If we swap the rows and columns twice, then we return to the original matrix. Thus, the
transpose of a transposed matrix is the original matrix, i.e.

(AT)T = A .

204

()()

� �

Example 16.1.3 transpose
Let us consider a few examples of transpose operation. A matrix A and its transpose B = AT are
related by ⎛ √

1 3
⎞

A = ⎜⎝ −4 9 ⎟⎠ and B = 1 −4 π√ .
3 9 −3

π −3
√

The rows and columns are swapped in the sense that A31 = B13 = π and A12 = B21 = 3. Also,
because A ∈ R3×2 , B ∈ R2×3 . Interpreting a vector as a special case of a matrix with one column,
we can also apply the transpose operator to a column vector to create a row vector, i.e., given ⎛ ⎞ √

3 ⎜⎝ ⎟⎠ −7 v = ,
π

the transpose operation yields √
T u = v = 3 −7 π .

Note that the transpose of a column vector is a row vector, and the transpose of a row vector is a
column vector.

·

16.1.2 Vector Operations

The first vector operation we consider is multiplication of a vector v ∈ Rm by a scalar α ∈ R. The
operation yields

u = αv ,

where each entry of u ∈ Rm is given by

ui = αvi, i = 1, . . . ,m .

In other words, multiplication of a vector by a scalar results in each component of the vector being
scaled by the scalar.

The second operation we consider is addition of two vectors v ∈ Rm and w ∈ Rm . The addition
yields

u = v + w ,

where each entry of u ∈ Rm is given by

ui = vi + wi, i = 1, . . . ,m .

In order for addition of two vectors to make sense, the vectors must have the same number of
components. Each entry of the resulting vector is simply the sum of the corresponding entries of
the two vectors.

We can summarize the action of the scaling and addition operations in a single operation. Let
v ∈ Rm , w ∈ Rm and α ∈ R. Then, the operation

u = v + αw

205

()

� � � �

� � � �

� � � � � �

0 0.5 1 1.5
0

0.5

1

1.5

v

u=α v

0 0.5 1 1.5
0

0.5

1

1.5

v

w

u=v+w

(a) scalar scaling (b) vector addition

Figure 16.1: Illustration of vector scaling and vector addition.

yields a vector u ∈ Rm whose entries are given by

ui = vi + αwi, i = 1, . . . ,m .

The result is nothing more than a combination of the scalar multiplication and vector addition
rules.

Example 16.1.4 vector scaling and addition in R2

Let us illustrate scaling of a vector by a scalar and addition of two vectors in R2 using

1 1/2 3
v = , w = , and α = .

1/3 1 2

First, let us consider scaling of the vector v by the scalar α. The operation yields

3 1 3/2
u = αv = = .

2 1/3 1/2

This operation is illustrated in Figure 16.1(a). The vector v is simply stretched by the factor of
3/2 while preserving the direction.

Now, let us consider addition of the vectors v and w. The vector addition yields

1 1/2 3/2
u = v + w = + = .

1/3 1 4/3

Figure 16.1(b) illustrates the vector addition process. We translate w so that it starts from the
tip of v to form a parallelogram. The resultant vector is precisely the sum of the two vectors.
Note that the geometric intuition for scaling and addition provided for R2 readily extends to higher
dimensions.

·

206

() ()

() ()

() () ()

����

Example 16.1.5 vector scaling and addition in R3
T T

Let v = 1 3 6 , w = 2 −1 0 , and α = 3. Then, ⎞⎛⎞⎛⎞⎛⎞⎛⎞⎛
1 2 1 6 7

u = v + αw = ⎜⎝ 3 ⎟⎠ + 3 · ⎜⎝ −1 ⎟⎠ = ⎜⎝ 3 ⎟⎠ + ⎜⎝ −3 ⎟⎠ = ⎜⎝ 0 ⎟⎠ .
6 0 6 0 6

·

Inner Product

Another important operation is the inner product. This operation takes two vectors of the same
dimension, v ∈ Rm and w ∈ Rm, and yields a scalar β ∈ R:

mm
β = v T w where β = viwi .

i=1

The appearance of the transpose operator will become obvious once we introduce the matrix-matrix
multiplication rule. The inner product in a Euclidean vector space is also commonly called the dot
product and is denoted by β = v · w. More generally, the inner product of two elements of a vector
space is denoted by (·, ·), i.e., β = (v, w).

Example 16.1.6 inner product
T T

Let us consider two vectors in R3 , v = 1 3 6 and w = 2 −1 0 . The inner product
of these two vectors is

m3
Tβ = v w = viwi = 1 · 2 + 3 · (−1) + 6 · 0 = −1 .

i=1

·

Norm (2-Norm)

Using the inner product, we can naturally define the 2-norm of a vector. Given v ∈ Rm, the 2-norm
of v, denoted by IvI2, is defined by

mm
i=1

Note that the norm of any vector is non-negative, because it is a sum m non-negative numbers

√
IvI2 = vTv = 2v i .

g(squared values). The £2 norm is the usual Euclidean length; in particular, for m = 2, the expression
2 2simplifies to the familiar Pythagorean theorem, IvI2 = v1 + v2. While there are other norms, we

almost exclusively use the 2-norm in this unit. Thus, for notational convenience, we will drop the
subscript 2 and write the 2-norm of v as IvI with the implicit understanding I · I ≡ I · I2.

By definition, any norm must satisfy the triangle inequality,

Iv + wI ≤ IvI + IwI ,

207

() ()

() ()

����
����

� � � �

� � � � � �

for any v, w ∈ Rm . The theorem states that the sum of the lengths of two adjoining segments
is longer than the distance between their non-joined end points, as is intuitively clear from Fig
ure 16.1(b). For norms defined by inner products, as our 2-norm above, the triangle inequality is
automatically satisfied.

Proof. For norms induced by an inner product, the proof of the triangle inequality follows directly
from the definition of the norm and the Cauchy-Schwarz inequality. First, we expand the expression
as

T T TIv + wI2 = (v + w)T(v + w) = v v + 2v w + w w .

The middle terms can be bounded by the Cauchy-Schwarz inequality, which states that

T T v w ≤ |v w| ≤ IvIIwI .

Thus, we can bound the norm as

Iv + wI2 ≤ IvI2 + 2IvIIwI + IwI2 = (IvI + IwI)2 ,

and taking the square root of both sides yields the desired result.

Example 16.1.7 norm of a vector
T T

Let v = 1 3 6 and w = 2 −1 0 . The £2 norms of these vectors are

3m g √
2IvI = vi = 12 + 32 + 62 = 46

i=1

3m g √
2and IwI = w = 22 + (−1)2 + 02 = 5 .i

i=1

·

Example 16.1.8 triangle inequality
Let us illustrate the triangle inequality using two vectors

1 1/2
v = and w = .

1/3 1

The length (or the norm) of the vectors are
10 5 IvI = ≈ 1.054 and IwI = ≈ 1.118 .
9 4

On the other hand, the sum of the two vectors is

1 1/2 3/2
v + w = + = ,

1/3 1 4/3

208

() ()

()()()

√√√√
√√√√

() ()

� � � �

0 0.5 1 1.5
0

0.5

1

1.5

v

w

v+w

||v||

||w||

Figure 16.2: Illustration of the triangle inequality.

and its length is
√
145 Iv + wI = ≈ 2.007 .
6

The norm of the sum is shorter than the sum of the norms, which is

IvI + IwI ≈ 2.172 .

This inequality is illustrated in Figure 16.2. Clearly, the length of v +w is strictly less than the sum
of the lengths of v and w (unless v and w align with each other, in which case we obtain equality).

·

In two dimensions, the inner product can be interpreted as

T v w = IvIIwI cos(θ) , (16.1)

where θ is the angle between v and w. In other words, the inner product is a measure of how well
v and w align with each other. Note that we can show the Cauchy-Schwarz inequality from the
above equality. Namely, | cos(θ)| ≤ 1 implies that

T|v w| = IvIIwI| cos(θ)| ≤ IvIIwI .

In particular, we see that the inequality holds with equality if and only if θ = 0 or π, which
corresponds to the cases where v and w align. It is easy to demonstrate Eq. (16.1) in two dimensions.

Proof. Noting v, w ∈ R2, we express them in polar coordinates

cos(θv) cos(θw)v = IvI and w = IwI .
sin(θv) sin(θw)

209

()()

The inner product of the two vectors yield

2m
Tβ = v w = viwi = IvI cos(θv)IwI cos(θw) + IvI sin(θv)IwI sin(θw)

i=1
= IvIIwI cos(θv) cos(θw) + sin(θv) sin(θw)

1 iθv −iθv)
1 iθw 1 iθv −iθv)

1 iθw −iθw)= IvIIwI (e + e (e + e −iθw) + (e − e (e − e
2 2 2i 2i
1 i(θv +θw) −i(θv +θw) i(θv −θw) −i(θv −θw)= IvIIwI e + e + e + e
4

1 i(θv +θw) −i(θv +θw) − e i(θv −θw) − e −i(θv −θw)− e + e
4

1 i(θv −θw) −i(θv −θw)= IvIIwI e + e
2

= IvIIwI cos(θv − θw) = IvIIwI cos(θ) ,

where the last equality follows from the definition θ ≡ θv − θw.

Begin Advanced Material

For completeness, let us introduce a more general class of norms.

Example 16.1.9 p-norms
The 2-norm, which we will almost exclusively use, belong to a more general class of norms, called
the p-norms. The p-norm of a vector v ∈ Rm is ⎛ ⎞1/p

mm ⎝ ⎠IvIp = |vi|p ,
i=1

where p ≥ 1. Any p-norm satisfies the positivity requirement, the scalar scaling requirement, and
the triangle inequality. We see that 2-norm is a case of p-norm with p = 2.

Another case of p-norm that we frequently encounter is the 1-norm, which is simply the sum of
the absolute value of the entries, i.e.

mm
IvI1 = |vi| .

i=1

The other one is the infinity norm given by

IvI∞ = lim IvIp = max |vi| .
p→∞ i=1,...,m

In other words, the infinity norm of a vector is its largest entry in absolute value.

·

End Advanced Material

210

()
(

� � � � � �

−5 −4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

u

v

w

Figure 16.3: Set of vectors considered to illustrate orthogonality.

Orthogonality

Two vectors v ∈ Rm and w ∈ Rm are said to be orthogonal to each other if

T v w = 0 .

In two dimensions, it is easy to see that

T v w = IvIIwI cos(θ) = 0 ⇒ cos(θ) = 0 ⇒ θ = π/2 .

That is, the angle between v and w is π/2, which is the definition of orthogonality in the usual
geometric sense.

Example 16.1.10 orthogonality
Let us consider three vectors in R2 ,

−4 3 0
u = , v = , and w = ,

2 6 5

and compute three inner products formed by these vectors:

T u v = −4 · 3 + 2 · 6 = 0
T u w = −4 · 0 + 2 · 5 = 10
T v w = 3 · 0 + 6 · 5 = 30 .

T TBecause u v = 0, the vectors u and v are orthogonal to each other. On the other hand, u w = 0
and the vectors u and w are not orthogonal to each other. Similarly, v and w are not orthogonal to
each other. These vectors are plotted in Figure 16.3; the figure confirms that u and v are orthogonal
in the usual geometric sense.

·

211

� � � �

� � � � � � � �

−1 −0.5 0 0.5 1
0

0.5

1

u

v

Figure 16.4: An orthonormal set of vectors.

Orthonormality

Two vectors v ∈ Rm and w ∈ Rm are said to be orthonormal to each other if they are orthogonal
to each other and each has unit length, i.e.

T v w = 0 and IvI = IwI = 1 .

Example 16.1.11 orthonormality
Two vectors

1 −2 1 1
u = √ and v = √

1 2

are orthonormal to each other. It is straightforward to verify that they are orthogonal to each other

5 5

T T
1 −2 1 1 1 −2 1T u v = √ √ = = 0

1 2 5 1 2

and that each of them have unit length

1

5 5

IuI = ((−2)2 + 12) = 1
5

1 IvI = ((1)2 + 22) = 1 .
5

Figure 16.4 shows that the vectors are orthogonal and have unit length in the usual geometric
sense.

·

16.1.3 Linear Combinations

Let us consider a set of n m-vectors

v 1 ∈ Rm , v 2 ∈ Rm , . . . , v n ∈ Rm .

A linear combination of the vectors is given by
nm

w = αj vj ,
j=1

where α1, α2, . . . , αn is a set of real numbers, and each vj is an m-vector.

212

√
√

� � � � � �

� � � � � � � �

� � � � � � � �

Example 16.1.12 linear combination of vectors
T T T

1 2 3Let us consider three vectors in R2 , v = −4 2 , v = 3 6 , and v = 0 5 . A
linear combination of the vectors, with α1 = 1, α2 = −2, and α3 = 3, is

3m −4 3 0
αj vj = 1 · + (−2) · + 3 ·w =

2 6 5
j=1

−4 −6 0 −10
= + + = .

2 −12 15 5

Another example of linear combination, with α1 = 1, α2 = 0, and α3 = 0, is

3

2 6 5 2
j=1

Note that a linear combination of a set of vectors is simply a weighted sum of the vectors.

·

Linear Independence

A set of n m-vectors are linearly independent if

m −4 3 0 −4
αj vj = 1 · + 0 · + 0 · =w = .

n

αj vj = 0 only if α1 = α2 = · · · = αn = 0 .
j=1

Otherwise, the vectors are linearly dependent.

m

Example 16.1.13 linear independence
Let us consider four vectors, ⎞⎛⎞⎛⎞⎛⎞⎛

2 0 0 2 ⎜⎝ 0 ⎟⎠ , 2 w = ⎜⎝ 0 ⎟⎠ , 3 w = ⎜⎝ 1 ⎟⎠ , and 4 w = ⎜⎝ 0 ⎟⎠ 1 w = .

⎞⎛⎞⎛

0 3 0 5

1 2 4} is linearly dependent because The set of vectors {w , w , w ⎞⎛⎞⎛
2 0 2 0

5 5 ⎜⎝ 0 ⎟⎠ + · ⎜⎝ 0 ⎟⎠ − 1 · ⎜⎝ 0 ⎟⎠ = ⎜⎝ 0 ⎟⎠ 1 2 − 1 · w 4 = 1 ·1 · w + ; · w
3 3

0 3 5 0

the linear combination with the weights {1, 5/3, −1} produces the zero vector. Note that the choice
of the weights that achieves this is not unique; we just need to find one set of weights to show that
the vectors are not linearly independent (i.e., are linearly dependent).

1 2On the other hand, the set of vectors {w ,w ,w3} is linearly independent. Considering a linear
combination, ⎞⎛⎞⎛⎞⎛⎞⎛

2 0 0 0
1 2 3α1 + α2 + α3 = α1 w w w · ⎜⎝ 0 ⎟⎠ + α2 · ⎜⎝ 0 ⎟⎠ + α3 · ⎜⎝ 1 ⎟⎠ = ⎜⎝ 0 ⎟⎠ ,

0 3 0 0

213

we see that we must choose α1 = 0 to set the first component to 0, α2 = 0 to set the third
component to 0, and α3 = 0 to set the second component to 0. Thus, only way to satisfy the

1 2equation is to choose the trivial set of weights, {0, 0, 0}. Thus, the set of vectors {w ,w ,w3} is
linearly independent.

·

Begin Advanced Material

Vector Spaces and Bases

Given a set of n m-vectors, we can construct a vector space, V , given by

1 2V = span({v , v , . . . , v n}) ,

where ⎧⎨
⎫⎬ n

1 2 , v , . . . , v v ∈ Rm : v = αk
m

v k, αk ∈ Rnn}) = span({v ⎩ ⎭
k=1

1 2 n= space of vectors which are linear combinations of v , v , . . . , v .

1In general we do not require the vectors {v , . . . , vn} to be linearly independent. When they are
linearly independent, they are said to be a basis of the space. In other words, a basis of the vector
space V is a set of linearly independent vectors that spans the space. As we will see shortly in our
example, there are many bases for any space. However, the number of vectors in any bases for a
given space is unique, and that number is called the dimension of the space. Let us demonstrate
the idea in a simple example.

Example 16.1.14 Bases for a vector space in R3

Let us consider a vector space V spanned by vectors ⎞⎛⎞⎛⎞⎛
1 2 0

1 v = ⎜⎝ 2 ⎟⎠ 2 v = ⎜⎝ 1 ⎟⎠ and 3 v = ⎜⎝ 1 ⎟⎠ .
0 0 0

By definition, any vector x ∈ V is of the form ⎞⎛⎞⎛⎞⎛⎞⎛
1 2 0 α1 + 2α2

1 2 3 x = α1 v + α2 v + α3 v = α1 ⎜⎝ 2 ⎟⎠ + α2 ⎜⎝ 1 ⎟⎠ + α3 ⎜⎝ 1 ⎟⎠ = ⎜⎝ 2α1 + α2 + α3 ⎟⎠ .
0 0 0 0

Clearly, we can express any vector of the form x = (x1, x2, 0)T by choosing the coefficients α1 ,
α2, and α3 judiciously. Thus, our vector space consists of vectors of the form (x1, x2, 0)T, i.e., all
vectors in R3 with zero in the third entry.

We also note that the selection of coefficients that achieves (x1, x2, 0)T is not unique, as it
requires solution to a system of two linear equations with three unknowns. The non-uniqueness of

1 2the coefficients is a direct consequence of {v , v , v3} not being linearly independent. We can easily
verify the linear dependence by considering a non-trivial linear combination such as ⎞⎛⎞⎛⎞⎛⎞⎛

1 2 0 0
2v 1 − v 2 − 3v 3 = 2 · ⎜⎝ 2 ⎟⎠ − 1 · ⎜⎝ 1 ⎟⎠ − 3 · ⎜⎝ 1 ⎟⎠ = ⎜⎝ 0 ⎟⎠ .

0 0 0 0

214

Because the vectors are not linearly independent, they do not form a basis of the space.
To choose a basis for the space, we first note that vectors in the space V are of the form

(x1, x2, 0)T . We observe that, for example, ⎞⎛⎞⎛
1 0

1 w = ⎜⎝ 0 ⎟⎠ and 2 w = ⎜⎝ 1 ⎟⎠
0 0

would span the space because any vector in V — a vector of the form (x1, x2, 0)T — can be expressed
as a linear combination, ⎞⎛⎞⎛⎞⎛⎞⎛

1 0 α1x1⎜⎝ ⎟⎠ 1 2 = α1 w + α2 w = α1 ⎜⎝ 0 ⎟⎠ + α2 ⎜⎝ 0 ⎟⎠ = ⎜⎝ α2 ⎟⎠ , x2
0 0 1 0

2 1by choosing α1 = x1 and α2 = x . Moreover, w1 and w2 are linearly independent. Thus, {w ,w2} is
1 2 1a basis for the space V . Unlike the set {v , v , v3} which is not a basis, the coefficients for {w ,w2}

that yields x ∈ V is unique. Because the basis consists of two vectors, the dimension of V is two.
This is succinctly written as

dim(V) = 2 .

Because a basis for a given space is not unique, we can pick a different set of vectors. For
example, ⎞⎛⎞⎛

1 2
1 z = ⎜⎝ 2 ⎟⎠ and 2 z = ⎜⎝ 1 ⎟⎠ ,

0 0

1is also a basis for V . Since z is not a constant multiple of z2, it is clear that they are linearly
independent. We need to verify that they span the space V . We can verify this by a direct
argument, ⎞⎛⎞⎛⎞⎛⎞⎛

1 2 α1 + 2α2x1⎜⎝ ⎟⎠ 1 2 = α1 z + α2 z = α1 ⎜⎝ 2 ⎟⎠ + α2 ⎜⎝ 1 ⎟⎠ = ⎜⎝ 2α1 + α2 ⎟⎠ . x2
0 0 0 0

We see that, for any (x1, x2, 0)T, we can find the linear combination of z1 and z2 by choosing the
coefficients α1 = (−x1 + 2x2)/3 and α2 = (2x1 − x2)/3. Again, the coefficients that represents x

1using {z , z2} are unique.
For the space V , and for any given basis, we can find a unique set of two coefficients to represent

any vector x ∈ V . In other words, any vector in V is uniquely described by two coefficients, or
parameters. Thus, a basis provides a parameterization of the vector space V . The dimension of the
space is two, because the basis has two vectors, i.e., the vectors in the space are uniquely described
by two parameters.

·

While there are many bases for any space, there are certain bases that are more convenient to
work with than others. Orthonormal bases — bases consisting of orthonormal sets of vectors —
are such a class of bases. We recall that two set of vectors are orthogonal to each other if their

215

1inner product vanishes. In order for a set of vectors {v , . . . , vn} to be orthogonal, the vectors must
satisfy

In other words, the vectors are mutually orthogonal. An orthonormal set of vectors is an orthogonal
1set of vectors with each vector having norm unity. That is, the set of vectors {v , . . . , vn} is mutually

orthonormal if

We note that an orthonormal set of vectors is linearly independent by construction, as we now
prove.

1Proof. Let {v , . . . , vn} be an orthogonal set of (non-zero) vectors. By definition, the set of vectors
is linearly independent if the only linear combination that yields the zero vector corresponds to all
coefficients equal to zero, i.e.

α1 1 · + αn α1 v + · · v n = 0 ⇒ = · · · = αn = 0 .

To verify this indeed is the case for any orthogonal set of vectors, we perform the inner product of
the linear combination with v1, . . . , vn to obtain

i)T(α1 1 · + αn i)T 1 i)T i i)T n(v v + · · v n) = α1(v v + · · · + αi(v v + · · · + αn(v v
= αiIv iI2 , i = 1, . . . , n .

Note that (vi)Tvj = 0, i = j, due to orthogonality. Thus, setting the linear combination equal to
zero requires

αiIv iI2 = 0, i = 1, . . . , n .

In other words, αi = 0 or IviI2 = 0 for each i. If we restrict ourselves to a set of non-zero vectors,
then we must have αi = 0. Thus, a vanishing linear combination requires α1 = · · · = αn = 0, which
is the definition of linear independence.

Because an orthogonal set of vectors is linearly independent by construction, an orthonormal
basis for a space V is an orthonormal set of vectors that spans V . One advantage of using an
orthonormal basis is that finding the coefficients for any vector in V is straightforward. Suppose,

1we have a basis {v , . . . , vn} and wish to find the coefficients α1, . . . , αn that results in x ∈ V . That
is, we are looking for the coefficients such that

1 i n x = α1 v + · · · + αi v + · · · + αn v .

To find the i-th coefficient αi, we simply consider the inner product with vi, i.e.
1 ii)T(v x = (v i)T(α1 v + · · · + αi v + · · · + αn v n)

i)T i)T i)T1 i n = α1(v v + · · · + αi(v v + · · · + αn(v v
i = αi(v i)T v = αiIv iI2 = αi , i = 1, . . . , n ,

where the last equality follows from IviI2 = 1. That is, αi = (vi)Tx, i = 1, . . . , n. In particular, for
an orthonormal basis, we simply need to perform n inner products to find the n coefficients. This
is in contrast to an arbitrary basis, which requires a solution to an n × n linear system (which is
significantly more costly, as we will see later).

216

(vi)Tvj = 0, i 6= j .

(vi)Tvj = 0, i 6= j

‖vi‖ = (vi)Tvi = 1, i = 1, . . . , n .

6

Example 16.1.15 Orthonormal Basis
Let us consider the space vector space V spanned by ⎞⎛⎞⎛⎞⎛

1 2 0
1 v = ⎜⎝ 2 ⎟⎠ 2 v = ⎜⎝ 1 ⎟⎠ and 3 v = ⎜⎝ 1 ⎟⎠ .

0 0 0

Recalling every vector in V is of the form (x1, x2, 0)T, a set of vectors ⎞⎛⎞⎛
1 0

1 w = ⎜⎝ 0 ⎟⎠ and 2 w = ⎜⎝ 1 ⎟⎠
0 0

forms an orthonormal basis of the space. It is trivial to verify they are orthonormal, as they are
orthogonal, i.e., (w1)Tw2 = 0, and each vector is of unit length Iw1I = Iw2I = 1. We also see that
we can express any vector of the form (x1, x2, 0)T by choosing the coefficients α1 = x1 and α2 = x2.

1Thus, {w ,w2} spans the space. Because the set of vectors spans the space and is orthonormal
(and hence linearly independent), it is an orthonormal basis of the space V .

Another orthonormal set of basis is formed by ⎞⎛⎞⎛
1 2

1 w =
1 √ ⎜⎝

1
2 ⎟⎠ and 2 w = ⎜⎝ −1 ⎟⎠ . √

⎞⎛

5 50 0

We can easily verify that they are orthogonal and each has a unit length. The coefficients for an
1arbitrary vector x = (x1, x2, 0)T ∈ V represented in the basis {w 2} are, w

x11 1
1 2 0 ⎜⎝ ⎟⎠ = 1)Tα1 = (w √ √ (x1 + 2x2)x = x2

5 50 ⎞ ⎛
x11 1

2 −1 0 ⎜⎝ ⎟⎠ = 2)Tα2 = (w √ √ (2x1 − x2) .x = x2
5 50

·

End Advanced Material

16.2 Matrix Operations

16.2.1 Interpretation of Matrices

Recall that a matrix A ∈ Rm×n consists of m rows and n columns for the total of m · n entries, ⎞⎛

A =
⎜⎜⎜⎜⎝

A11 A12 · · · A1n
A21 A22 · · · A2n
. . .

.
Am1 Am2 · · · Amn

⎟⎟⎟⎟⎠
.

This matrix can be interpreted in a column-centric manner as a set of n column m-vectors. Alter
natively, the matrix can be interpreted in a row-centric manner as a set of m row n-vectors. Each
of these interpretations is useful for understanding matrix operations, which is covered next.

217

16.2.2 Matrix Operations

The first matrix operation we consider is multiplication of a matrix A ∈ Rm1×n1 by a scalar α ∈ R.
The operation yields

B = αA ,

where each entry of B ∈ Rm1×n1 is given by

Bij = αAij , i = 1, . . . ,m1, j = 1, . . . , n1 .

Similar to the multiplication of a vector by a scalar, the multiplication of a matrix by a scalar scales
each entry of the matrix.

The second operation we consider is addition of two matrices A ∈ Rm1×n1 and B ∈ Rm2×n2 .
The addition yields

C = A + B ,

where each entry of C ∈ Rm1×n1 is given by

Cij = Aij + Bij , i = 1, . . . ,m1, j = 1, . . . , n1 .

In order for addition of two matrices to make sense, the matrices must have the same dimensions,
m1 and n1.

We can combine the scalar scaling and addition operation. Let A ∈ Rm1×n1 , B ∈ Rm1×n1 , and
α ∈ R. Then, the operation

C = A + αB

yields a matrix C ∈ Rm1×n1 whose entries are given by

Cij = Aij + αBij , i = 1, . . . ,m1, j = 1, . . . , n1 .

Note that the scalar-matrix multiplication and matrix-matrix addition operations treat the matrices
as arrays of numbers, operating entry by entry. This is unlike the matrix-matrix prodcut, which is
introduced next after an example of matrix scaling and addition.

Example 16.2.1 matrix scaling and addition
Consider the following matrices and scalar, ⎛ √ ⎞⎛⎞

1 3 0 2 ⎜⎝ −4 9 ⎟⎠ , B = ⎜⎝ 2 −3 ⎟⎠ A = , and α = 2 .
π −3 π −4

Then, ⎛ √ ⎛⎞⎛⎞ ⎞ √
1 3 0 2 1 3 + 4 ⎜⎝ −4 9 ⎟⎠ + 2 · ⎜⎝ 2 −3 ⎟⎠ = ⎜⎝ 0 3 ⎟⎠ C = A + αB = .
π −3 π −4 3π −11

·

218

� �

� �

� � � �

Matrix-Matrix Product

Let us consider two matrices A ∈ Rm1×n1 and B ∈ Rm2×n2 with n1 = m2. The matrix-matrix
product of the matrices results in

C = AB

with
n1

Cij = AikBkj , i = 1, . . . ,m1, j = 1, . . . , n2 .
k=1

Because the summation applies to the second index of A and the first index of B, the number of
columns of A must match the number of rows of B: n1 = m2 must be true. Let us consider a few
examples.

Example 16.2.2 matrix-matrix product
Let us consider matrices A ∈ R3×2 and B ∈ R2×3 with

m

⎞⎛
1 3 ⎟⎠

2 3 −5
and B = .

1 0 −1 A = ⎜⎝ −4 9
0 −3

The matrix-matrix product yields ⎞⎛⎞⎛
1 3 5 3 −8

2 3 −5 ⎜⎝ −4 9 ⎟⎠ = ⎜⎝ 1 −12 11 ⎟⎠ C = AB = ,
1 0 −1

0 −3 −3 0 3

where each entry is calculated as
2m

C11 = A1kBk1 = A11B11 + A12B21 = 1 · 2 + 3 · 1 = 5
k=1 m2

C12 = A1kBk2 = A11B12 + A12B22 = 1 · 3 + 3 · 0 = 3
k=1 m2

C13 = A1kBk3 = A11B13 + A12B23 = 1 · −5 + 3 · (−1) = −8
k=1 m2

C21 = A2kBk1 = A21B11 + A22B21 = −4 · 2 + 9 · 1 = 1
k=1

. . . m2
C33 = A3kBk3 = A31B13 + A32B23 = 0 · −5 + (−3) · (−1) = 3 .

k=1

Note that because A ∈ R3×2 and B ∈ R2×3 , C ∈ R3×3 .
This is very different from ⎞⎛

1 3
2 3 −5 ⎜⎝ ⎟⎠

−10 48
= ,

1 6 D = BA = −4 9
1 0 −1

0 −3

219

where each entry is calculated as

3

D11 = A1kBk1 = B11A11 + B12A21 + B13A31 = 2 · 1 + 3 · (−4) + (−5) · 0 = −10
k=1

. . .

m

3

D22 = A2kBk2 = B21A12 + B22A22 + B23A32 = 1 · 3 + 0 · 9 + (−1) · (−3) = 6 .
k=1

Note that because B ∈ R2×3 and A ∈ R3×2 , D ∈ R2×2 . Clearly, C = AB = BA = D; C and D in
fact have different dimensions. Thus, matrix-matrix product is not commutative in general, even
if both AB and BA make sense.

·

Example 16.2.3 inner product as matrix-matrix product
The inner product of two vectors can be considered as a special case of matrix-matrix product. Let

m

⎞⎛⎞⎛
1 −2

v = ⎜⎝ 3 ⎟⎠ and w = ⎜⎝ 0 ⎟⎠ .
6 4

T ∈ R1×3We have v, w ∈ R3(= R3×1). Taking the transpose, we have v . Noting that the second
dimension of vT and the first dimension of w match, we can perform matrix-matrix product, ⎞ ⎛

−2
β T = v w = 1 3 6 ⎜⎝ 0 ⎟⎠ = 1 · (−2) + 3 · 0 + 6 · 4 = 22 .

4
·

Example 16.2.4 outer product
The outer product of two vectors is yet another special case of matrix-matrix product. The outer
product B of two vectors v ∈ Rm and w ∈ Rm is defined as

TB = vw .

TBecause v ∈ Rm×1 and wT ∈ R1×m, the matrix-matrix product vw is well-defined and yields as
m × m matrix.

As in the previous example, let ⎞⎛⎞⎛
1 −2

v = ⎜⎝ 3 ⎟⎠ and w = ⎜⎝ 0 ⎟⎠ .
6 4

The outer product of two vectors is given by ⎞⎛⎞⎛
−2 −2 −6 −12

T wv = ⎜⎝ 0 ⎟⎠ 1 3 6 = ⎜⎝ 0 0 0 ⎟⎠ .
4 4 12 24

Clearly, β = vTw = wvT = B, as they even have different dimensions.

220

6

6

·

In the above example, we saw that AB = BA in general. In fact, AB might not even be allowed
even if BA is allowed (consider A ∈ R2×1 and B ∈ R3×2). However, although the matrix-matrix
product is not commutative in general, the matrix-matrix product is associative, i.e.

ABC = A(BC) = (AB)C .

Moreover, the matrix-matrix product is also distributive, i.e.

(A + B)C = AC + BC .

Proof. The associative and distributive properties of matrix-matrix product is readily proven from
its definition. For associativity, we consider ij-entry of the m1 × n3 matrix A(BC), i.e. ⎛ ⎞

n1 n1 n2 n1 n2 n2 n1m m m mm mm ⎝ ⎠ =(A(BC))ij = Aik(BC)kj = Aik BklClj AikBklClj = AikBklClj
k=1 k=1 l=1 k=1 l=1 l=1 k=1 ⎛ ⎞
n2 n1 n2m m m

= ⎝ AikBkl ⎠ Clj = (AB)ilClj = ((AB)C)ij , ∀ i, j .
l=1 k=1 l=1

Since the equality (A(BC))ij = ((AB)C)ij holds for all entries, we have A(BC) = (AB)C.
The distributive property can also be proven directly. The ij-entry of (A+B)C can be expressed

as
n1 n1 n1m m m

((A + B)C)ij = (A + B)ikCkj = (Aik + Bik)Ckj = (AikCkj + BikCkj)
k=1 k=1 k=1
n1 n1m m

= AikCkj + BikCkj = (AC)ij + (BC)ij , ∀ i, j .
k=1 k=1

Again, since the equality holds for all entries, we have (A + B)C = AC + BC.

Another useful rule concerning matrix-matrix product and transpose operation is

(AB)T = BTAT .

This rule is used very often.

Proof. The proof follows by checking the components of each side. The left-hand side yields

n1m
((AB)T)ij = (AB)ji = AjkBki .

k=1

The right-hand side yields

n1 n1 n1m m m
(BTAT)ij = (BT)ik(A

T)kj = BkiAjk = AjkBki .
k=1 k=1 k=1

221

6

Thus, we have

((AB)T)ij = (BTAT)ij , i = 1, . . . , n2, j = 1, . . . ,m1 .

16.2.3 Interpretations of the Matrix-Vector Product

Let us consider a special case of the matrix-matrix product: the matrix-vector product. The
special case arises when the second matrix has only one column. Then, with A ∈ Rm×n and
w = B ∈ Rn×1 = Rn, we have

C = AB ,

where
n n

Cij = AikBkj = Aikwk, i = 1, . . . ,m1, j = 1 .
k=1 k=1

Since C ∈ Rm×1 = Rm, we can introduce v ∈ Rm and concisely write the matrix-vector product as

m

v = Aw ,

where

m

mn
vi = Aikwk, i = 1, . . . ,m .

k=1

Expanding the summation, we can think of the matrix-vector product as

v1 = A11w1 + A12w2 + · · · + A1nwn

v2 = A21w1 + A22w2 + · · · + A2nwn

. . .
vm = Am1w1 + Am2w2 + · · · + Amnwn .

Now, we consider two different interpretations of the matrix-vector product.

Row Interpretation

The first interpretation is the “row” interpretation, where we consider the matrix-vector multipli
cation as a series of inner products. In particular, we consider vi as the inner product of i-th row
of A and w. In other words, the vector v is computed entry by entry in the sense that ⎞ ⎛

Ai1 Ai2 · · · Ain

⎜⎜⎜⎜⎝

w1
w2

⎟⎟⎟⎟⎠
i = 1, . . . ,m . vi = . . .

wn

,

222

()

Example 16.2.5 row interpretation of matrix-vector product
An example of the row interpretation of matrix-vector product is ⎞⎛

T
0 1 0 3 2 1⎞⎛ ⎞ ⎛ ⎞ ⎛ 0 1 0 2 ⎟⎠ =

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 3 2 1
T

T
0 0 0 3 2 1

T
0 0 1 3 2 1

·

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎜⎜⎜⎝

3
2 v =

⎜⎜⎜⎝

⎟⎟⎟⎠
⎜⎝

⎟⎟⎟⎠
. 1 0 0

0 0 0
3
0

1
0 0 1 1

Column Interpretation

The second interpretation is the “column” interpretation, where we consider the matrix-vector
multiplication as a sum of n vectors corresponding to the n columns of the matrix, i.e. ⎞⎛⎞⎛⎞⎛

A11 A12 A1n

v =
⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
w1 +

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
w2 + · · · +

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
wn .

A21
. . .

A22
. . .

A2n
. . .

Am1 Am2 Amn

In this case, we consider v as a linear combination of columns of A with coefficients w. Hence
v = Aw is simply another way to write a linear combination of vectors: the columns of A are the
vectors, and w contains the coefficients.

Example 16.2.6 column interpretation of matrix-vector product
An example of the column interpretation of matrix-vector product is ⎞⎛⎞⎛⎞⎛⎞⎛⎞⎛ ⎞ ⎛ 0 1 0 0 1 0 2

3
v =

⎜⎜⎜⎝

⎟⎟⎟⎠
= 3 ·

⎜⎜⎜⎝
1
0

⎟⎟⎟⎠
+ 2 ·

⎜⎜⎜⎝
0
0

⎟⎟⎟⎠
+ 1 ·

⎜⎜⎜⎝
0
0

⎟⎟⎟⎠
=

⎜⎜⎜⎝
3
0

⎟⎟⎟⎠
. 1 0 0

0 0 0
⎜⎝ ⎟⎠ 2

1
0 0 1 0 0 1 1

Clearly, the outcome of the matrix-vector product is identical to that computed using the row
interpretation.

·

Left Vector-Matrix Product

We now consider another special case of the matrix-matrix product: the left vector-matrix product.
This special case arises when the first matrix only has one row. Then, we have A ∈ R1×m and

TB ∈ Rm×n . Let us denote the matrix A, which is a row vector, by w . Clearly, w ∈ Rm, because
T ∈ R1×mw . The left vector-matrix product yields

v = w TB ,

where mm
vj = wkBkj , j = 1, . . . , n .

k=1

223

() ()
()
()
()

()
()
()

� �

� �

The resultant vector v is a row vector in R1×n . The left vector-matrix product can also be inter
preted in two different manners. The first interpretation considers the product as a series of dot
products, where each entry vj is computed as a dot product of w with the j-th column of B, i.e. ⎞ ⎛

vj = w1 w2 · · · wm

⎜⎜⎜⎜⎝

B1j
B2j
. . .

Bmj

⎟⎟⎟⎟⎠
, j = 1, . . . , n .

The second interpretation considers the left vector-matrix product as a linear combination of rows
of B, i.e.

v = w1 B11 B12 · · · B1n + w2 B21 B22 · · · B2n

+ · · · + wm Bm1 Bm2 · · · Bmn .

16.2.4 Interpretations of the Matrix-Matrix Product

Similar to the matrix-vector product, the matrix-matrix product can be interpreted in a few different
ways. Throughout the discussion, we assume A ∈ Rm1×n1 and B ∈ Rn1×n2 and hence C = AB ∈
Rm1×n2 .

Matrix-Matrix Product as a Series of Matrix-Vector Products

One interpretation of the matrix-matrix product is to consider it as computing C one column at a
time, where the j-th column of C results from the matrix-vector product of the matrix A with the
j-th column of B, i.e.

C·j = AB·j , j = 1, . . . , n2 ,

where C·j refers to the j-th column of C. In other words, ⎞⎛⎞⎛⎞⎛ ⎜⎜⎜⎜⎝

C1j
C2j
. . .

⎟⎟⎟⎟⎠
=

⎜⎜⎜⎜⎝

A11 A12 · · · A1n1

A21 A22 · · · A2n1
.

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠

B1j
B2j
. . .

⎟⎟⎟⎟⎠
, j = 1, . . . , n2 .

Cm1j Am11 Am12 · · · Am1n1 Bn1j

Example 16.2.7 matrix-matrix product as a series of matrix-vector products
Let us consider matrices A ∈ R3×2 and B ∈ R2×3 with ⎞⎛

1 3
A = ⎜⎝ −4 9 ⎟⎠

2 3 −5
and B = .

1 0 −1
0 −3

The first column of C = AB ∈ R3×3 is given by ⎞⎛⎞⎛
1 3 5

C·1 = AB·1 = ⎜⎝ −4 9 ⎟⎠
2

= ⎜⎝ 1 ⎟⎠ .
1

0 −3 −3

224

()

() ()
()

� �

� �

Similarly, the second and third columns are given by ⎞⎛⎞⎛
1 3 3 ⎜⎝ −4 9 ⎟⎠

3
=

0
⎜⎝ −12 ⎟⎠ C·2 = AB·2 =

0 −3 0

and ⎞⎛⎞⎛
1 3 −8

C·3 = AB·3 = ⎜⎝ −4 9 ⎟⎠
−5

= ⎜⎝ 11 ⎟⎠ . −1
0 −3 3

Putting the columns of C together ⎞⎛
5 3 −8

C = C·1 C·2 C·3 = ⎜⎝ 1 −12 11 ⎟⎠ .
−3 0 3

·

Matrix-Matrix Product as a Series of Left Vector-Matrix Products

In the previous interpretation, we performed the matrix-matrix product by constructing the re
sultant matrix one column at a time. We can also use a series of left vector-matrix products to
construct the resultant matrix one row at a time. Namely, in C = AB, the i-th row of C results
from the left vector-matrix product of i-th row of A with the matrix B, i.e.

Ci· = Ai·B, i = 1, . . . ,m1 ,

where Ci· refers to the i-th row of C. In other words, ⎞⎛

Ci1 · · · Cin1 = Ai1 · · · Ain1

⎜⎜⎝

B11 · · · B1n2
.

Bm21 · · · Bm2n2

⎟⎟⎠ , i = 1, . . . ,m1 .

16.2.5 Operation Count of Matrix-Matrix Product

Matrix-matrix product is ubiquitous in scientific computing, and significant effort has been put
into efficient performance of the operation on modern computers. Let us now count the number
of additions and multiplications required to compute this product. Consider multiplication of
A ∈ Rm1×n1 and B ∈ Rn1×n2 . To compute C = AB, we perform

mn1

Cij = AikBkj , i = 1, . . . ,m1, j = 1, . . . , n2 .
k=1

Computing each Cij requires n1 multiplications and n1 additions, yielding the total of 2n1 opera
tions. We must perform this for m1n2 entries in C. Thus, the total operation count for computing
C is 2m1n1n2. Considering the matrix-vector product and the inner product as special cases of
matrix-matrix product, we can summarize how the operation count scales.

225

Operation Sizes Operation count
Matrix-matrix m1 = n1 = m2 = n2 = n 2n3

Matrix-vector m1 = n1 = m2 = n, n2 = 1 2n2

Inner product n1 = m1 = n, m1 = n2 = 1 2n

The operation count is measured in FLoating Point Operations, or FLOPs. (Note FLOPS is
different from FLOPs: FLOPS refers to FLoating Point Operations per Second, which is a “speed”
associated with a particular computer/hardware and a particular implementation of an algorithm.)

16.2.6 The Inverse of a Matrix (Briefly)

We have now studied the matrix vector product, in which, given a vector x ∈ Rn, we calculate a
new vector b = Ax, where A ∈ Rn×n and hence b ∈ Rn . We may think of this as a “forward”
problem, in which given x we calculate b = Ax. We can now also ask about the corresponding
“inverse” problem: given b, can we find x such that Ax = b? Note in this section, and for reasons
which shall become clear shortly, we shall exclusively consider square matrices, and hence we set
m = n.

To begin, let us revert to the scalar case. If b is a scalar and a is a non-zero scalar, we know
that the (very simple linear) equation ax = b has the solution x = b/a. We may write this more

−1suggestively as x = a−1b since of course a = 1/a. It is important to note that the equation
ax = b has a solution only if a is non-zero; if a is zero, then of course there is no x such that ax = b.
(This is not quite true: in fact, if b = 0 and a = 0 then ax = b has an infinity of solutions — any
value of x. We discuss this “singular but solvable” case in more detail in Unit V.)

We can now proceed to the matrix case “by analogy.” The matrix equation Ax = b can of course
be viewed as a system of linear equations in n unknowns. The first equation states that the inner
product of the first row of A with x must equal b1; in general, the ith equation states that the inner
product of the ith row of A with x must equal bi. Then if A is non-zero we could plausibly expect
that x = A−1b. This statement is clearly deficient in two related ways: what we do mean when we
say a matrix is non-zero? and what do we in fact mean by A−1 .

As regards the first question, Ax = b will have a solution when A is non-singular: non-singular is
the proper extension of the scalar concept of “non-zero” in this linear systems context. Conversely,
if A is singular then (except for special b) Ax = b will have no solution: singular is the proper
extension of the scalar concept of “zero” in this linear systems context. How can we determine if
a matrix A is singular? Unfortunately, it is not nearly as simple as verifying, say, that the matrix
consists of at least one non-zero entry, or contains all non-zero entries.

There are variety of ways to determine whether a matrix is non-singular, many of which may
only make good sense in later chapters (in particular, in Unit V): a non-singular n × n matrix A
has n independent columns (or, equivalently, n independent rows); a non-singular n × n matrix
A has all non-zero eigenvalues; a non-singular matrix A has a non-zero determinant (perhaps this
condition is closest to the scalar case, but it is also perhaps the least useful); a non-singular matrix
A has all non-zero pivots in a (partially pivoted) “LU” decomposition process (described in Unit
V). For now, we shall simply assume that A is non-singular. (We should also emphasize that in
the numerical context we must be concerned not only with matrices which might be singular but
also with matrices which are “almost” singular in some appropriate sense.) As regards the second
question, we must first introduce the identity matrix, I.

Let us now define an identity matrix. The identity matrix is a m × m square matrix with ones
on the diagonal and zeros elsewhere, i.e.

1, i = j
Iij = .

0, i j

226

6=

 � �

� �

� �

Identity matrices in R1 , R2, and R3 are ⎞⎛
1 0 0

1 0 ⎜⎝ 0 1 0 ⎟⎠ I = 1 , I = , and I = .
0 1

0 0 1

The identity matrix is conventionally denoted by I. If v ∈ Rm, the i-th entry of Iv is
m

(Iv)i = Iikvk
k=1

0 0 0 0 = (((· · · + Ii1v1 + · · + Ii,i+1vi+1 + ·Ii,i−1vi−1 + Iiivi + Iimvm

= vi, i = 1, . . . ,m .

TI TSo, we have Iv = v. Following the same argument, we also have v = v . In essence, I is the
m-dimensional version of “one.”

We may then define A−1 as that (unique) matrix such that A−1A = I. (Of course in the scalar
−1 −1 −1case, this defines a as the unique scalar such that a a = 1 and hence a = 1/a.) In fact,

A−1A = I and also AA−1 = I and thus this is a case in which matrix multiplication does indeed
commute. We can now “derive” the result x = A−1b: we begin with Ax = b and multiply both sides
by A−1 to obtain A−1Ax = A−1b or, since the matrix product is associative, x = A−1b. Of course
this definition of A−1 does not yet tell us how to find A−1: we shall shortly consider this question
from a pragmatic Matlab perspective and then in Unit V from a more fundamental numerical
linear algebra perspective. We should note here, however, that the matrix inverse is very rarely
computed or used in practice, for reasons we will understand in Unit V. Nevertheless, the inverse
can be quite useful for very small systems (n small) and of course more generally as an central

m

concept in the consideration of linear systems of equations.

Example 16.2.8 The inverse of a 2 × 2 matrix
We consider here the case of a 2 × 2 matrix A which we write as

A = a b
.

c d

If the columns are to be independent we must have a/b = c/d or (ad)/(bc) = 1 or ad − bc = 0 which
in fact is the condition that the determinant of A is nonzero. The inverse of A is then given by

1 d −b
A−1 = .

ad − bc −c a

Note that this inverse is only defined if ad − bc = 0, and we thus see the necessity that A is non-
singular. It is a simple matter to show by explicit matrix multiplication that A−1A = AA−1 = I,
as desired.

·

16.3 Special Matrices

Let us now introduce a few special matrices that we shall encounter frequently in numerical methods.

227

� �

� �

16.3.1 Diagonal Matrices

A square matrix A is said to be diagonal if the off-diagonal entries are zero, i.e.

Aij = 0, i = j .

Example 16.3.1 diagonal matrices
Examples of diagonal matrix are ⎞⎛

2 0 0
1 0

= ⎜⎝ 0 1 0 ⎟⎠ , and C = 4 . A = , B
0 3

0 0 7

The identity matrix is a special case of a diagonal matrix with all the entries in the diagonal equal
to 1. Any 1 × 1 matrix is trivially diagonal as it does not have any off-diagonal entries.

·

16.3.2 Symmetric Matrices

A square matrix A is said to be symmetric if the off-diagonal entries are symmetric about the
diagonal, i.e.

Aij = Aji, i = 1, . . . ,m, j = 1, . . . ,m .

The equivalent statement is that A is not changed by the transpose operation, i.e.

AT = A .

We note that the identity matrix is a special case of symmetric matrix. Let us look at a few more
examples.

Example 16.3.2 Symmetric matrices
Examples of symmetric matrices are ⎞⎛

2 π 3
1 −2

= ⎜⎝ π 1 −1 ⎟⎠ , and C = 4 . A = , B −2 3
3 −1 7

Note that any scalar, or a 1 × 1 matrix, is trivially symmetric and unchanged under transpose.

·

16.3.3 Symmetric Positive Definite Matrices

A m × m square matrix A is said to be symmetric positive definite (SPD) if it is symmetric and
furthermore satisfies

v TAv > 0, ∀ v ∈ Rm (v = 0) .

Before we discuss its properties, let us give an example of a SPD matrix.

228

 ()

()

6

6

� �

Example 16.3.3 Symmetric positive definite matrices
An example of a symmetric positive definite matrix is

2 −1
A = . −1 2

We can confirm that A is symmetric by inspection. To check if A is positive definite, let us consider
the quadratic form ⎛ ⎞

2 2 2 2m m m m
q(v) ≡ v TAv = vi ⎝ Aij vj ⎠ = Aij vivj

i=1 j=1 i=1 j=1

= A11v1
2 + A12v1v2 + A21v2v1 + A22v2

2

= A11v1
2 + 2A12v1v2 + A22v 2 ,2

where the last equality follows from the symmetry condition A12 = A21. Substituting the entries
of A,

2 21 1 1 32 2 2 2 2 q(v) = v TAv = 2v1 − 2v1v2 + 2v2 = 2 v1 − v2 − v2 + v = 2 v1 − v2 + v .2 22 4 2 4

Because q(v) is a sum of two positive terms (each squared), it is non-negative. It is equal to zero
only if

1 3 2 v1 − v2 = 0 and v2 = 0 .
2 4

The second condition requires v2 = 0, and the first condition with v2 = 0 requires v1 = 0. Thus,
we have

q(v) = v TAv > 0, ∀ v ∈ R2 ,

and vTAv = 0 if v = 0. Thus A is symmetric positive definite.

·

Symmetric positive definite matrices are encountered in many areas of engineering and science.
They arise naturally in the numerical solution of, for example, the heat equation, the wave equation,
and the linear elasticity equations. One important property of symmetric positive definite matrices
is that they are always invertible: A−1 always exists. Thus, if A is an SPD matrix, then, for any
b, there is always a unique x such that

Ax = b .

In a later unit, we will discuss techniques for solution of linear systems, such as the one above. For
now, we just note that there are particularly efficient techniques for solving the system when the
matrix is symmetric positive definite.

229

()

() ()

� �

� �

16.3.4 Triangular Matrices

Triangular matrices are square matrices whose entries are all zeros either below or above the
diagonal. A m × m square matrix is said to be upper triangular if all entries below the diagonal
are zero, i.e.

Aij = 0, i > j .

A square matrix is said to be lower triangular if all entries above the diagonal are zero, i.e.

Aij = 0, j > i .

We will see later that a linear system, Ax = b, in which A is a triangular matrix is particularly
easy to solve. Furthermore, the linear system is guaranteed to have a unique solution as long as all
diagonal entries are nonzero.

Example 16.3.4 triangular matrices
Examples of upper triangular matrices are ⎞⎛

1 0 2
1 −2

A = and B = ⎜⎝ 0 4 1 ⎟⎠ .
0 3

0 0 −3

Examples of lower triangular matrices are ⎛
2 0

⎞
0

1 0
C = and D = ⎜⎝ 7 −5 0 ⎟⎠ . −7 6

3 1 4
·

Begin Advanced Material

16.3.5 Orthogonal Matrices

A m × m square matrix Q is said to be orthogonal if its columns form an orthonormal set. That
is, if we denote the j-th column of Q by qj , we have

Q = q1 q2 · · · qm ,

where

T 1, i = j
qi qj = .

0, i = j

Orthogonal matrices have a special property

QTQ = I .

This relationship follows directly from the fact that columns of Q form an orthonormal set. Recall
that the ij entry of QTQ is the inner product of the i-th row of QT (which is the i-th column of
Q) and the j-th column of Q. Thus,

T 1, i = j
(QTQ)ij = qi qj = ,

0, i = j

230

()

()

()

6

6

� � � �

� �

 � �

which is the definition of the identity matrix. Orthogonal matrices also satisfy

QQT = I ,

which in fact is a minor miracle.

Example 16.3.5 Orthogonal matrices
Examples of orthogonal matrices are

√ √
2/ 5 −1/ 5 1 0

Q = √ √ and I = .
1/ 5 2/ 5 0 1

We can easily verify that the columns the matrix Q are orthogonal to each other and each are of
unit length. Thus, Q is an orthogonal matrix. We can also directly confirm that QTQ = QQT = I.
Similarly, the identity matrix is trivially orthogonal.

·

Let us discuss a few important properties of orthogonal matrices. First, the action by an
orthogonal matrix preserves the 2-norm of a vector, i.e.

IQxI2 = IxI2, ∀ x ∈ Rm .

This follows directly from the definition of 2-norm and the fact that QTQ = I, i.e.

TIQxI22 = (Qx)T(Qx) = x TQTQx = x TIx = x x = IxI22 .

Second, orthogonal matrices are always invertible. In fact, solving a linear system defined by an
orthogonal matrix is trivial because

Qx = b ⇒ QTQx = QTb ⇒ x = QTb .

In considering linear spaces, we observed that a basis provides a unique description of vectors in
V in terms of the coefficients. As columns of Q form an orthonormal set of m m-vectors, it can be
thought of as an basis of Rm . In solving Qx = b, we are finding the representation of b in coefficients
of {q1, . . . , qm}. Thus, the operation by QT (or Q) represent a simple coordinate transformation.
Let us solidify this idea by showing that a rotation matrix in R2 is an orthogonal matrix.

Example 16.3.6 Rotation matrix
Rotation of a vector is equivalent to representing the vector in a rotated coordinate system. A
rotation matrix that rotates a vector in R2 by angle θ is

cos(θ) − sin(θ)
R(θ) = .

sin(θ) cos(θ)

Let us verify that the rotation matrix is orthogonal for any θ. The two columns are orthogonal
because

− sin(θ)T r1 r2 = cos(θ) sin(θ) = − cos(θ) sin(θ) + sin(θ) cos(θ) = 0, ∀ θ .
cos(θ)

Each column is of unit length because

Ir1I22 = (cos(θ))2 + (sin(θ))2 = 1
Ir2I22 = (− sin(θ))2 + (cos(θ))2 = 1, ∀ θ .

231

� � � �

 � �

Thus, the columns of the rotation matrix is orthonormal, and the matrix is orthogonal. This
result verifies that the action of the orthogonal matrix represents a coordinate transformation in
R2 . The interpretation of an orthogonal matrix as a coordinate transformation readily extends to
higher-dimensional spaces.

·

16.3.6 Orthonormal Matrices

Let us define orthonormal matrices to be m × n matrices whose columns form an orthonormal set,
i.e.

Q = q1 q2 · · · qn ,

with

T 1, i = j
qi qj =

0, i = j .

Note that, unlike an orthogonal matrix, we do not require the matrix to be square. Just like
orthogonal matrices, we have

QTQ = I ,

where I is an n × n matrix. The proof is identical to that for the orthogonal matrix. However,
QQT does not yield an identity matrix,

QQT = I ,

unless of course m = n.

Example 16.3.7 orthonormal matrices
An example of an orthonormal matrix is ⎛ ⎞ √ √

1/ 6 −2/ 5√ √⎜⎝ ⎟⎠ Q = 2/ 6 1/ 5 . √
1/ 6 0

We can verify that QTQ = I because ⎛ ⎞ √ √ √ √ √ 1/ 6 −2/ 5√ √1/ 6 2/ 6 1/ 6√ 1 0
= . ⎜⎝ ⎟⎠ QTQ = √ 2/ 6 1/ 5 √ 0 1 −2/ 5 1/ 5 0

1/ 6 0

However, QQT = I because ⎛ ⎞⎛⎞√ √ √ √ √ 1/ 6 −2/ 5√ 29/30 −1/15 1/6
−1/15 13/15 1/3

√ 1/ 6 2/ 6 1/ 6√⎜⎝ ⎟⎠ = ⎜⎝ ⎟⎠ QQT = √ 2/ 6 1/ 5 . √ −2/ 5 1/ 5 0
1/6 1/3 1/6 1/ 6 0

·

End Advanced Material

232

6

=

6

6

{
6

6

6

6

6

6 ()

6

6

()

6

� �

� �

� � � �

Begin Advanced Material

16.4 Further Concepts in Linear Algebra

16.4.1 Column Space and Null Space

Let us introduce more concepts in linear algebra. First is the column space. The column space
of matrix A is a space of vectors that can be expressed as Ax. From the column interpretation
of matrix-vector product, we recall that Ax is a linear combination of the columns of A with the
weights provided by x. We will denote the column space of A ∈ Rm×n by col(A), and the space is
defined as

col(A) = {v ∈ Rm : v = Ax for some x ∈ Rn} .

The column space of A is also called the image of A, img(A), or the range of A, range(A).
The second concept is the null space. The null space of A ∈ Rm×n is denoted by null(A) and is

defined as

null(A) = {x ∈ Rn : Ax = 0} ,

i.e., the null space of A is a space of vectors that results in Ax = 0. Recalling the column
interpretation of matrix-vector product and the definition of linear independence, we note that the
columns of A must be linearly dependent in order for A to have a non-trivial null space. The null
space defined above is more formally known as the right null space and also called the kernel of A,
ker(A).

Example 16.4.1 column space and null space
Let us consider a 3 × 2 matrix ⎞ ⎛

0 2
A = ⎜⎝ 1 0 ⎟⎠ .

0 0

The column space of A is the set of vectors representable as Ax, which are ⎞⎛⎞⎛⎞⎛⎞⎛
0 2 0 2 2x2

Ax = ⎜⎝ 1 0 ⎟⎠
x1 = ⎜⎝ 1 ⎟⎠ · x1 + ⎜⎝ 0 ⎟⎠ · x2 = ⎜⎝ ⎟⎠ . x1 x20 0 0 0 0

So, the column space of A is a set of vectors with arbitrary values in the first two entries and zero
in the third entry. That is, col(A) is the 1-2 plane in R3 .

Because the columns of A are linearly independent, the only way to realize Ax = 0 is if x is the
zero vector. Thus, the null space of A consists of the zero vector only.

Let us now consider a 2 × 3 matrix

B = 1
2

2
−1

0
3 .

The column space of B consists of vectors of the form ⎞ ⎛
x11 2 0 ⎜⎝ ⎟⎠

x1 + 2x2 = . Bx = x22 −1 3 2x1 − x2 + 3x3 x3

233

()

By judiciously choosing x1, x2, and x3, we can express any vectors in R2 . Thus, the column space
of B is entire R2, i.e., col(B) = R2 .

Because the columns of B are not linearly independent, we expect B to have a nontrivial null
space. Invoking the row interpretation of matrix-vector product, a vector x in the null space must
satisfy

x1 + 2x2 = 0 and 2x1 − x2 + 3x3 = 0 .

The first equation requires x1 = −2x2. The combination of the first requirement and the second
5equation yields x3 = 3 x2. Thus, the null space of B is ⎧ ⎪⎪⎨

⎫ ⎪⎪⎬
⎞ ⎛

−2 ⎜⎝ ⎟⎠ : α ∈ R . null(B) = α · 1 ⎪⎪⎩ ⎪⎪⎭ 5/3

Thus, the null space is a one-dimensional space (i.e., a line) in R3 .
·

16.4.2 Projectors

Another important concept — in particular for least squares covered in Chapter 17 — is the concept
of projector. A projector is a square matrix P that is idempotent, i.e.

P 2 = PP = P .

Let v be an arbitrary vector in Rm . The projector P projects v, which is not necessary in col(P),
onto col(P), i.e.

w = P v ∈ col(P), ∀ v ∈ Rm .

In addition, the projector P does not modify a vector that is already in col(P). This is easily
verified because

P w = P P v = P v = w, ∀ w ∈ col(P) .

Intuitively, a projector projects a vector v ∈ Rm onto a smaller space col(P). If the vector is already
in col(P), then it would be left unchanged.

The complementary projector of P is a projector I − P . It is easy to verify that I − P is a
projector itself because

(I − P)2 = (I − P)(I − P) = I − 2P + PP = I − P .

It can be shown that the complementary projector I − P projects onto the null space of P , null(P).
When the space along which the projector projects is orthogonal to the space onto which the

projector projects, the projector is said to be an orthogonal projector. Algebraically, orthogonal
projectors are symmetric.

When an orthonormal basis for a space is available, it is particularly simple to construct an
orthogonal projector onto the space. Say {q1, . . . , qn} is an orthonormal basis for a n-dimensional
subspace of Rm , n < m. Given any v ∈ Rm, we recall that

T ui = qi v

234

is the component of v in the direction of qi represented in the basis {qi}. We then introduce the
vector

wi = qi(qi
T v) ;

the sum of such vectors would produce the projection of v ∈ Rm onto V spanned by {qi}. More
compactly, if we form an m × n matrix

Q = q1 · · · qn ,

then the projection of v onto the column space of Q is

w = Q(QT v) = (QQT)v .

We recognize that the orthogonal projector onto the span of {qi} or col(Q) is

P = QQT .

Of course P is symmetric, (QQT)T = (QT)TQT = QQT , and idempotent, (QQT)(QQT) =
Q(QTQ)QT = QQT .

End Advanced Material

235

()

236

Chapter 17

Least Squares

17.1 Data Fitting in Absence of Noise and Bias

We motivate our discussion by reconsidering the friction coefficient example of Chapter 15. We
recall that, according to Amontons, the static friction, Ff, static, and the applied normal force,
Fnormal, applied, are related by

Ff, static ≤ µs Fnormal, applied ;

here µs is the coefficient of friction, which is only dependent on the two materials in contact. In
particular, the maximum static friction is a linear function of the applied normal force, i.e.

F max
f, static = µs Fnormal, applied .

We wish to deduce µs by measuring the maximum static friction attainable for several different
values of the applied normal force.

Our approach to this problem is to first choose the form of a model based on physical principles
and then deduce the parameters based on a set of measurements. In particular, let us consider a
simple affine model

y = Ymodel(x; β) = β0 + β1x .

The variable y is the predicted quantity, or the output, which is the maximum static friction
F max The variable x is the independent variable, or the input, which is the maximum normal f, static.
force Fnormal, applied. The function Ymodel is our predictive model which is parameterized by a
parameter β = (β0, β1). Note that Amontons’ law is a particular case of our general affine model
with β0 = 0 and β1 = µs. If we take m noise-free measurements and Amontons’ law is exact, then
we expect

F max
f, static i = µs Fnormal, applied i, i = 1, . . . ,m .

The equation should be satisfied exactly for each one of the m measurements. Accordingly, there
is also a unique solution to our model-parameter identification problem

yi = β0 + β1xi, i = 1, . . . ,m ,

237

DRAFT V1.2 © The Authors. License: Creative Commons BY-NC-SA 3.0 .

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

� �

with the solution given by βtrue = 0 and βtrue = µs.0 1
Because the dependency of the output y on the model parameters {β0, β1} is linear, we can

write the system of equations as a m × 2 matrix equation ⎞⎛⎞⎛
1 x1 ⎟⎟⎟⎟⎠

β0 =
β1

⎜⎜⎜⎜⎝

y1
y2
. . .

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠

1 x2
.

,

1 xm ym ' v ' " v ' " v "
X β Y

or, more compactly,

Xβ = Y .

Using the row interpretation of matrix-vector multiplication, we immediately recover the original
set of equations, ⎞⎛⎞⎛

β0 + β1x1 ⎟⎟⎟⎟⎠
=

⎜⎜⎜⎜⎝

y1
y2
. . .

⎟⎟⎟⎟⎠
= Y . Xβ =

⎜⎜⎜⎜⎝

β0 + β1x2
. . .

β0 + β1xm ym

Or, using the column interpretation, we see that our parameter fitting problem corresponds to
choosing the two weights for the two m-vectors to match the right-hand side, ⎞⎛⎞⎛⎞⎛

1 x1 ⎟⎟⎟⎟⎠
=

⎜⎜⎜⎜⎝

y1
y2
. . .

⎟⎟⎟⎟⎠
= Y . Xβ = β0

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
+ β1

⎜⎜⎜⎜⎝

1
. . .

x2
. . .

1 xm ym

We emphasize that the linear system Xβ = Y is overdetermined, i.e., more equations than
unknowns (m > n). (We study this in more detail in the next section.) However, we can still find
a solution to the system because the following two conditions are satisfied:

Unbiased: Our model includes the true functional dependence y = µsx, and thus the model
is capable of representing this true underlying functional dependence. This would not be
the case if, for example, we consider a constant model y(x) = β0 because our model would
be incapable of representing the linear dependence of the friction force on the normal force.
Clearly the assumption of no bias is a very strong assumption given the complexity of the
physical world.

Noise free: We have perfect measurements: each measurement yi corresponding to the
independent variable xi provides the “exact” value of the friction force. Obviously this is
again rather näıve and will need to be relaxed.

Under these assumptions, there exists a parameter βtrue that completely describe the measurements,
i.e.

yi = Ymodel(x; βtrue), i = 1, . . . ,m .

238

(The βtrue will be unique if the columns of X are independent.) Consequently, our predictive model
is perfect, and we can exactly predict the experimental output for any choice of x, i.e.

Y (x) = Ymodel(x; βtrue), ∀ x ,

where Y (x) is the experimental measurement corresponding to the condition described by x. How
ever, in practice, the bias-free and noise-free assumptions are rarely satisfied, and our model is
never a perfect predictor of the reality.

In Chapter 19, we will develop a probabilistic tool for quantifying the effect of noise and bias; the
current chapter focuses on developing a least-squares technique for solving overdetermined linear
system (in the deterministic context) which is essential to solving these data fitting problems. In
particular we will consider a strategy for solving overdetermined linear systems of the form

Bz = g ,

where B ∈ Rm×n , z ∈ Rn, and g ∈ Rm with m > n.
Before we discuss the least-squares strategy, let us consider another example of overdetermined

systems in the context of polynomial fitting. Let us consider a particle experiencing constant
acceleration, e.g. due to gravity. We know that the position y of the particle at time t is described
by a quadratic function

y(t) =
1
at2 + v0t + y0 ,

2

where a is the acceleration, v0 is the initial velocity, and y0 is the initial position. Suppose that
we do not know the three parameters a, v0, and y0 that govern the motion of the particle and we
are interested in determining the parameters. We could do this by first measuring the position of
the particle at several different times and recording the pairs {ti, y(ti)}. Then, we could fit our
measurements to the quadratic model to deduce the parameters.

The problem of finding the parameters that govern the motion of the particle is a special case
of a more general problem: polynomial fitting. Let us consider a quadratic polynomial, i.e.

y(x) = βtrue + βtrue x + βtrue 2 x ,0 1 2

where βtrue = {βtrue, βtrue, βtrue} is the set of true parameters characterizing the modeled phe0 1 2
nomenon. Suppose that we do not know βtrue but we do know that our output depends on the
input x in a quadratic manner. Thus, we consider a model of the form

Ymodel(x; β) = β0 + β1x + β2x 2 ,

and we determine the coefficients by measuring the output y for several different values of x. We
are free to choose the number of measurements m and the measurement points xi, i = 1, . . . ,m.
In particular, upon choosing the measurement points and taking a measurement at each point, we
obtain a system of linear equations,

yi = Ymodel(xi; β) = β0 + β1xi + β2xi
2 , i = 1, . . . ,m ,

where yi is the measurement corresponding to the input xi.
2Note that the equation is linear in our unknowns {β0, β1, β2} (the appearance of x only affects i

the manner in which data enters the equation). Because the dependency on the parameters is

239

linear, we can write the system as matrix equation, ⎞⎛⎞⎛
1 x1 x2 ⎞ ⎛ y1 1

β01 x2 x2y2 ⎟⎠
2

β1= ,

⎜⎜⎜⎜⎝ .

⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎝ . . .
⎜⎝

⎟⎟⎟⎟⎠ β2
ym 1 xm x2

m "'"'"' v
Y

v
X

v
β

or, more compactly,

Y = Xβ .

Note that this particular matrix X has a rather special structure — each row forms a geometric se
j−1ries and the ij-th entry is given by Bij = x . Matrices with this structure are called Vandermonde i

matrices.
As in the friction coefficient example considered earlier, the row interpretation of matrix-vector

product recovers the original set of equation ⎞⎛⎞⎛
β0 + β1x1 + β2x2y1

y2
. . .

1
2

Y =
⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
=

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
= Xβ .

β0 + β1x2 + β2x2
. . .

β0 + β1xm + β2x2ym m

With the column interpretation, we immediately recognize that this is a problem of finding the
three coefficients, or parameters, of the linear combination that yields the desired m-vector Y , i.e. ⎞⎛⎞⎛⎞⎛⎞⎛

1 x1 x2y1
y2
. . .

⎟⎟⎟⎟⎠
= β0

⎜⎜⎜⎜⎝

1
2

Y =
⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
= Xβ .

1
. . .

x2
. . .

x 2
+ β1 + β2 . . .

2ym 1 xm xm

We know that if have three or more non-degenerate measurements (i.e., m ≥ 3), then we can find
the unique solution to the linear system. Moreover, the solution is the coefficients of the underlying

, βtrue, βtruepolynomial, (βtrue).0 1 2

Example 17.1.1 A quadratic polynomial
Let us consider a more specific case, where the underlying polynomial is of the form

1 2 1 2 y(x) = − + x − cx .
2 3 8

We recognize that y(x) = Ymodel(x; βtrue) for Ymodel(x; β) = β0 +β1x+β2x
2 and the true parameters

1 2 1
βtrue βtrue βtrue = − , = , and = − c . 0 1 22 3 8

The parameter c controls the degree of quadratic dependency; in particular, c = 0 results in an
affine function.

First, we consider the case with c = 1, which results in a strong quadratic dependency, i.e.,
βtrue = −1/8. The result of measuring y at three non-degenerate points (m = 3) is shown in
Figure 17.1(a). Solving the 3 × 3 linear system with the coefficients as the unknown, we obtain

1 2 1
β0 = −

2
, β1 =

3
, and β2 = −

8
.

240

2

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y

y
meas

y

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y

y
meas

y

(a) m = 3 (b) m = 7

Figure 17.1: Deducing the coefficients of a polynomial with a strong quadratic dependence.

Not surprisingly, we can find the true coefficients of the quadratic equation using three data points.

Suppose we take more measurements. An example of taking seven measurements (m = 7) is
shown in Figure 17.1(b). We now have seven data points and three unknowns, so we must solve
the 7 × 3 linear system, i.e., find the set β = {β0, β1, β2} that satisfies all seven equations. The
solution to the linear system, of course, is given by

1 2 1
β0 = − , β1 = , and β2 = − .

2 3 8

The result is correct (β = βtrue) and, in particular, no different from the result for the m = 3 case.
We can modify the underlying polynomial slightly and repeat the same exercise. For example,

let us consider the case with c = 1/10, which results in a much weaker quadratic dependency of
y on x, i.e., βtrue = −1/80. As shown in Figure 17.1.1, we can take either m = 3 or m = 72
measurements. Similar to the c = 1 case, we identify the true coefficients,

1 2 1
β0 = − , β1 = , and β2 = − ,

2 3 80

using the either m = 3 or m = 7 (in fact using any three or more non-degenerate measurements).

·

In the friction coefficient determination and the (particle motion) polynomial identification
problems, we have seen that we can find a solution to the m × n overdetermined system (m > n) if

(a) our model includes the underlying input-output functional dependence — no bias;

(b) and the measurements are perfect — no noise.

As already stated, in practice, these two assumptions are rarely satisfied; i.e., models are often
(in fact, always) incomplete and measurements are often inaccurate. (For example, in our particle
motion model, we have neglected friction.) We can still construct a m × n linear system Bz = g
using our model and measurements, but the solution to the system in general does not exist.
Knowing that we cannot find the “solution” to the overdetermined linear system, our objective is

241

� �

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

x

y

y
meas

y

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

x

y

y
meas

y

(a) m = 3 (b) m = 7

Figure 17.2: Deducing the coefficients of a polynomial with a weak quadratic dependence.

to find a solution that is “close” to satisfying the solution. In the following section, we will define
the notion of “closeness” suitable for our analysis and introduce a general procedure for finding the
“closest” solution to a general overdetermined system of the form

Bz = g ,

where B ∈ Rm×n with m > n. We will subsequently address the meaning and interpretation of
this (non-) solution.

17.2 Overdetermined Systems

Let us consider an overdetermined linear system — such as the one arising from the regression
example earlier — of the form

Bz = g ,

or, more explicitly, ⎞⎛⎞⎛
B11 B12 g1

g2
⎜⎝ ⎟⎠

z1 = ⎜⎝ ⎟⎠ . B21 B22 z2B31 B32 g3

Our objective is to find z that makes the three-component vector equation true, i.e., find the
solution to the linear system. In Chapter 16, we considered the “forward problem” of matrix-
vector multiplication in which, given z, we calculate g = Bz. We also briefly discussed the “inverse”
problem in which given g we would like to find z. But for m = n, B−1 does not exist; as discussed
in the previous section, there may be no z that satisfies Bz = g. Thus, we will need to look for a
z that satisfies the equation “closely” in the sense we must specify and interpret. This is the focus
of this section.1

1Note later (in Unit V) we shall look at the ostensibly simpler case in which B is square and a solution z exists
and is even unique. But, for many reasons, overdetermined systems are a nicer place to start.

242

()

6

� �

� �

� �

Row Interpretation

Let us consider a row interpretation of the overdetermined system. Satisfying the linear system
requires

Bi1z1 + Bi2z2 = gi, i = 1, 2, 3 .

Note that each of these equations define a line in R2 . Thus, satisfying the three equations is
equivalent to finding a point that is shared by all three lines, which in general is not possible, as
we will demonstrate in an example.

Example 17.2.1 row interpretation of overdetermined system
Let us consider an overdetermined system ⎞⎛⎞⎛

1 2 ⎜⎝ ⎟⎠
z1 = ⎜⎝

5/2
2 ⎟⎠ . 2 1

z22 −3 −2

Using the row interpretation of the linear system, we see there are three linear equations to be
satisfied. The set of points x = (x1, x2) that satisfies the first equation,

5
1 · x1 + 2 · x2 = ,

2
form a line

L1 = {(x1, x2) : 1 · x2 + 2 · x2 = 5/2}

in the two dimensional space. Similarly, the sets of points that satisfy the second and third equations
form lines described by

L2 = {(x1, x2) : 2 · x1 + 1 · x2 = 2}
L3 = {(x1, x2) : 2 · x1 − 3 · x2 = −2} .

These set of points in L1, L2, and L3, or the lines, are shown in Figure 17.3(a).
The solution to the linear system must satisfy each of the three equations, i.e., belong to all

three lines. This means that there must be an intersection of all three lines and, if it exists, the
solution is the intersection. This linear system has the solution

1/2
z = .

1

However, three lines intersecting in R2 is a rare occurrence; in fact the right-hand side of the system
was chosen carefully so that the system has a solution in this example. If we perturb either the
matrix or the right-hand side of the system, it is likely that the three lines will no longer intersect.

A more typical overdetermined system is the following system, ⎞⎛⎞⎛
1 2 0 ⎜⎝ 2 1 ⎟⎠

z1 = ⎜⎝ 2 ⎟⎠ .
z22 −3 −4

Again, interpreting the matrix equation as a system of three linear equations, we can illustrate the
set of points that satisfy each equation as a line in R2 as shown in Figure 17.3(b). There is no
solution to this overdetermined system, because there is no point (z1, z2) that belongs to all three
lines, i.e., the three lines do not intersect at a point.

·

243

()

()

()

� �

−2 −1 0 1 2
−2

−1

0

1

2

L
1

L
2

L
3

−2 −1 0 1 2
−2

−1

0

1

2

L
1

L
2

L
3

(a) system with a solution (b) system without a solution

Figure 17.3: Illustration of the row interpretation of the overdetermined systems. Each line is a set
of points that satisfies Bix = gi, i = 1, 2, 3.

Column Interpretation

Let us now consider a column interpretation of the overdetermined system. Satisfying the linear
system requires ⎞⎛⎞⎛⎞⎛

B11 B12 ⎟⎠ = ⎜⎝
g1
g2

⎟⎠ . z1 ·
⎜⎝ ⎟⎠ + z2 ·

⎜⎝ B21 B22
B31 B32 g3

In other words, we consider a linear combination of two vectors in R3 and try to match the right-
hand side g ∈ R3 . The vectors span at most a plane in R3, so there is no weight (z1, z2) that makes
the equation hold unless the vector g happens to lie in the plane. To clarify the idea, let us consider
a specific example.

Example 17.2.2 column interpretation of overdetermined system
For simplicity, let us consider the following special case: ⎞⎛⎞⎛

1 0 1 ⎜⎝ 0 1 ⎟⎠
z1 = ⎜⎝ ⎟⎠ . 3/2
z20 0 2

The column interpretation results in ⎞⎛⎞⎛⎞⎛
1 0 1 ⎜⎝ 0 ⎟⎠ z1 + ⎜⎝ 1 ⎟⎠ z2 = ⎜⎝ 3/2 ⎟⎠ .
0 0 2

By changing z1 and z2, we can move in the plane ⎞⎛⎞⎛⎞⎛
1 0 z1⎜⎝ 0 ⎟⎠ z1 + ⎜⎝ 1 ⎟⎠ z2 = ⎜⎝ ⎟⎠ . z2
0 0 0

244

()

−2

−1

0

1

2

−2
−1

0
1

2

−1

0

1

2

col(B)

span(col(B))

g

Bz
*

Figure 17.4: Illustration of the column interpretation of the overdetermined system.

Clearly, if g3 = 0, it is not possible to find z1 and z2 that satisfy the linear equation, Bz = g. In
other words, g must lie in the plane spanned by the columns of B, which is the 1 − 2 plane in this
case.

Figure 17.4 illustrates the column interpretation of the overdetermined system. The vector
g ∈ R3 does not lie in the space spanned by the columns of B, thus there is no solution to the

∗system. However, if g3 is “small”, then we can find a z such that Bz∗ is “close” to g, i.e., a good
approximation to g. Such an approximation is shown in the figure, and the next section discusses
how to find such an approximation.

·

17.3 Least Squares

17.3.1 Measures of Closeness

In the previous section, we observed that it is in general not possible to find a solution to an
overdetermined system. Our aim is thus to find z such that Bz is “close” to g, i.e., z such that

Bz ≈ g ,

for B ∈ Rm×n , m > n. For convenience, let us introduce the residual function, which is defined as

r(z) ≡ g − Bz .

Note that
nm

ri = gi − (Bz)i = gi − Bij zj , i = 1, . . . ,m .
j=1

Thus, ri is the “extent” to which i-th equation (Bz)i = gi is not satisfied. In particular, if ri(z) = 0,
i = 1, . . . ,m, then Bz = g and z is the solution to the linear system. We note that the residual is
a measure of closeness described by m values. It is more convenient to have a single scalar value
for assessing the extent to which the equation is satisfied. A simple way to achieve this is to take
a norm of the residual vector. Different norms result in different measures of closeness, which in
turn produce different best-fit solutions.

245

6

Begin Advanced Material

Let us consider first two examples, neither of which we will pursue in this chapter.

Example 17.3.1 £1 minimization
The first method is based on measuring the residual in the 1-norm. The scalar representing the
extent of mismatch is

m mm m
J1(z) ≡ Ir(z)I1 = |ri(z)| = |(g − Bz)i| .

i=1 i=1

The best z, denoted by z ∗, is the z that minimizes the extent of mismatch measured in J1(z), i.e.

∗ z = arg min J1(z) .
z∈Rm

The arg minz∈Rn J1(z) returns the argument z that minimizes the function J1(z). In other words,
∗ z satisfies

J1(z ∗) ≤ J1(z), ∀ z ∈ Rm .

This minimization problem can be formulated as a linear programming problem. The minimizer
is not necessarily unique and the solution procedure is not as simple as that resulting from the
2-norm. Thus, we will not pursue this option here.

·

Example 17.3.2 £∞ minimization
The second method is based on measuring the residual in the ∞-norm. The scalar representing the
extent of mismatch is

J∞(z) ≡ Ir(z)I∞ = max |ri(z)| = max |(g − Bz)i| .
i=1,...,m i=1,...,m

The best z that minimizes J∞(z) is

∗ z = arg min J∞(z) .
z∈Rn

This so-called min-max problem can also be cast as a linear programming problem. Again, this
procedure is rather complicated, and the solution is not necessarily unique.

·

End Advanced Material

17.3.2 Least-Squares Formulation (.2 minimization)

Minimizing the residual measured in (say) the 1-norm or ∞-norm results in a linear programming
problem that is not so easy to solve. Here we will show that measuring the residual in the 2-norm
results in a particularly simple minimization problem. Moreover, the solution to the minimization
problem is unique assuming that the matrix B is full rank — has n independent columns. We shall
assume that B does indeed have independent columns.

246

The scalar function representing the extent of mismatch for £2 minimization is

J2(z) ≡ Ir(z)I2 = r T(z)r(z) = (g − Bz)T(g − Bz) .2

Note that we consider the square of the 2-norm for convenience, rather than the 2-norm itself. Our
∗objective is to find z such that

z ∗ = arg min
z∈Rn

J2(z) ,

∗which is equivalent to find z with

∗ Ig − Bz ∗ I2 = J2(z ∗) < J2(z) = Ig − BzI22, ∀ z = z .2

(Note “arg min” refers to the argument which minimizes: so “min” is the minimum and “arg min”
is the minimizer .) Note that we can write our objective function J2(z) as

mm
J2(z) = Ir(z)I2 = r T(z)r(z) = (ri(z))

2 .2
i=1

In other words, our objective is to minimize the sum of the square of the residuals, i.e., least squares.
∗ ∗Thus, we say that z is the least-squares solution to the overdetermined system Bz = g: z is that

z which makes J2(z) — the sum of the squares of the residuals — as small as possible.
Note that if Bz = g does have a solution, the least-squares solution is the solution to the

overdetermined system. If z is the solution, then r = Bz − g = 0 and in particular J2(z) = 0, which
∗is the minimum value that J2 can take. Thus, the solution z is the minimizer of J2: z = z . Let us

now derive a procedure for solving the least-squares problem for a more general case where Bz = g
does not have a solution.

For convenience, we drop the subscript 2 of the objective function J2, and simply denote it by
∗J . Again, our objective is to find z such that

∗ J(z ∗) < J(z), ∀ z = z .

Expanding out the expression for J(z), we have

J(z) = (g − Bz)T(g − Bz) = (g T − (Bz)T)(g − Bz)

= g T(g − Bz) − (Bz)T(g − Bz)
T = g g − g TBz − (Bz)T g + (Bz)T(Bz)
T TBT = g g − g TBz − z g + z TBTBz ,

where we have used the transpose rule which tells us that (Bz)T = zTBT . We note that gTBz is
a scalar, so it does not change under the transpose operation. Thus, gTBz can be expressed as

TBT g TBz = (g TBz)T = z g ,

again by the transpose rule. The function J thus simplifies to

T TBTJ(z) = g g − 2z g + z TBTBz .

For convenience, let us define N ≡ BTB ∈ Rn×n, so that

T TBTJ(z) = g g − 2z g + z TNz .

247

6

6

It is simple to confirm that each term in the above expression is indeed a scalar.
The solution to the minimization problem is given by

Nz ∗ = d ,

where d = BTg. The equation is called the “normal” equation, which can be written out as ⎞⎛⎞⎛⎞⎛
∗N11 N12 · · · N1n d1z1
∗ z2
. . .

⎜⎜⎜⎜⎝

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠

⎟⎟⎟⎟⎠
=

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
.

N21 N22 · · · N2n
.

d2
. . .

"

∗Nn1 Nn2 · · · Nnn zn dn

'

∗The existence and uniqueness of z is guaranteed assuming that the columns of B are independent.
∗We provide below the proof that z is the unique minimizer of J(z) in the case in which B has

independent columns.

Proof. We first show that the normal matrix N is symmetric positive definite, i.e.

x TNx > 0, ∀ x ∈ Rn (x = 0) ,

assuming the columns of B are linearly independent. The normal matrix N = BTB is symmetric
because

"

NT = (BTB)T = BT(BT)T = BTB = N .

To show N is positive definite, we first observe that

x TNx = x TBTBx = (Bx)T(Bx) = IBxI2 .

That is, xTNx is the 2-norm of Bx. Recall that the norm of a vector is zero if and only if the
vector is the zero vector. In our case,

x TNx = 0 if and only if Bx = 0 .

'

Because the columns of B are linearly independent, Bx = 0 if and only if x = 0. Thus, we have

x TNx = IBxI2 > 0, x = 0 .

Thus, N is symmetric positive definite.
Now recall that the function to be minimized is

T TBTJ(z) = g g − 2z g + z TNz .
∗If z minimizes the function, then for any δz = 0, we must have

∗ J(z ∗) < J(z + δz) ;
∗ Let us expand J(z + δz):

∗ T ∗ ∗ ∗ J(z + δz) = g g − 2(z + δz)TBT g + (z + δz)TN(z + δz) ,

T ∗ BT = g g − 2z g + (z ∗)TNz ∗ −2δzTBT g + δzTNz ∗ + (z ∗)TNδz +δzTNδz , v v
J(z ∗) δzTNTz ∗ =δzTNz∗

= J(z ∗) + 2δzT(Nz ∗ − BT g) + δzTNδz .

248

6=

6=

6=

� � � �

 � �
 � �

� � � �

∗Note that NT = N because NT = (BTB)T = BTB = N . If z satisfies the normal equation,
Nz∗ = BTg, then

Nz ∗ − BT g = 0 ,

and thus

∗ J(z + δz) = J(z ∗) + δzTNδz .

The second term is always positive because N is positive definite. Thus, we have

∗ J(z + δz) > J(z ∗), ∀ δz = 0 ,

∗or, setting δz = z − z ,

∗ J(z ∗) < J(z), ∀ z = z .

∗Thus, z satisfying the normal equation Nz∗ = BTg is the minimizer of J , i.e., the least-squares
solution to the overdetermined system Bz = g.

Example 17.3.3 2 × 1 least-squares and its geometric interpretation
Consider a simple case of a overdetermined system,

B = 2
z = 1

.
1 2

Because the system is 2 × 1, there is a single scalar parameter, z, to be chosen. To obtain the
normal equation, we first construct the matrix N and the vector d (both of which are simply scalar
for this problem):

2
N = BTB = 2 1 = 5

1

d = BT g = 2 1 1
= 4 .

2

Solving the normal equation, we obtain the least-squares solution
∗ ∗ Nz ∗ = d ⇒ 5z = 4 ⇒ z = 4/5 .

This choice of z yields

2 4 8/5
Bz ∗ = · = ,

1 5 4/5

which of course is different from g.
The process is illustrated in Figure 17.5. The span of the column of B is the line parameterized

T
by 2 1 z, z ∈ R. Recall that the solution Bz∗ is the point on the line that is closest to g in
the least-squares sense, i.e.

∗ IBz ∗ − gI2 < IBz − gI, ∀ z = z .

249

6=

6=

()
6

6

6

()

6

 � � � � � �

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

col(B)

span(col(B))

g

Bz
*

Figure 17.5: Illustration of least-squares in R2 .

Recalling that the £2 distance is the usual Euclidean distance, we expect the closest point to be the
orthogonal projection of g onto the line span(col(B)). The figure confirms that this indeed is the
case. We can verify this algebraically, ⎛ ⎞

2 4 1 3/5
BT(Bz ∗ − g) = 2 1 ⎝ · − ⎠ = 2 1 = 0 .

1 5 2 −6/5

Thus, the residual vector Bz∗ − g and the column space of B are orthogonal to each other. While
the geometric illustration of orthogonality may be difficult for a higher-dimensional least squares,
the orthogonality condition can be checked systematically using the algebraic method.

·

17.3.3 Computational Considerations

Let us analyze the computational cost of solving the least-squares system. The first step is the
formulation of the normal matrix,

N = BTB ,

which requires a matrix-matrix multiplication of BT ∈ Rn×m and B ∈ Rm×n . Because N is sym
metric, we only need to compute the upper triangular part of N , which corresponds to performing
n(n + 1)/2 m-vector inner products. Thus, the computational cost is mn(n + 1). Forming the
right-hand side,

d = BT g ,

requires a matrix-vector multiplication of BT ∈ Rn×m and g ∈ Rm . This requires n m-vector inner
products, so the computational cost is 2mn. This cost is negligible compared to the mn(n + 1)
operations required to form the normal matrix. Finally, we must solve the n-dimensional linear
system

Nz = d .

250

As we will see in the linear algebra unit, solving the n × n symmetric positive definite linear system
1 3requires approximately 3 n operations using the Cholesky factorization (as we discuss further in

Unit V). Thus, the total operation count is

Cnormal ≈ mn(n + 1) +
1 3 n .
3

For a system arising from regression, m » n, so we can further simplify the expression to

Cnormal ≈ mn(n + 1) ≈ mn 2 ,

which is quite modest for n not too large.
While the method based on the normal equation works well for small systems, this process turns

out to be numerically “unstable” for larger problems. We will visit the notion of stability later;
for now, we can think of stability as an ability of an algorithm to control the perturbation in the
solution under a small perturbation in data (or input). In general, we would like our algorithm to
be stable. We discuss below the method of choice.

Begin Advanced Material

QR Factorization and the Gram-Schmidt Procedure

A more stable procedure for solving the overdetermined system is that based on QR factorization.
QR factorization is a procedure to factorize, or decompose, a matrix B ∈ Rm×n into an orthonormal
matrix Q ∈ Rm×n and an upper triangular matrix R ∈ Rn×n such that B = QR. Once we have
such a factorization, we can greatly simplify the normal equation BTBz∗ = BTg. Substitution of
the factorization into the normal equation yields

BTBz ∗ = BT g ⇒ RT QTQ Rz ∗ = RTQT g ⇒ RTRz ∗ = RTQT g . ' v "
I

Here, we use the fact that QTQ = I if Q is an orthonormal matrix. The upper triangular matrix
is invertible as long as its diagonal entries are all nonzero (which is the case for B with linearly
independent columns), so we can further simplify the expression to yield

Rz ∗ = QT g .

Thus, once the factorization is available, we need to form the right-hand side QTg, which requires
2mn operations, and solve the n × n upper triangular linear system, which requires n2 operations.
Both of these operations are inexpensive. The majority of the cost is in factorizing the matrix B
into matrices Q and R.

There are two classes of methods for producing a QR factorization: the Gram-Schmidt proce
dure and the Householder transform. Here, we will briefly discuss the Gram-Schmidt procedure.
The idea behind the Gram-Schmidt procedure is to successively turn the columns of B into or
thonormal vectors to form the orthonormal matrix Q. For convenience, we denote the j-th column
of B by bj , i.e.

B = b1 b2 · · · bn ,

where bj is an m-vector. Similarly, we express our orthonormal matrix as

Q = q1 q2 · · · qn .

251

 � �

 � �

TRecall q qj = δi j (Kronecker-delta), 1 ≤ i, j ≤ n.i
The Gram-Schmidt procedure starts with a set which consists of a single vector, b1. We construct

an orthonormal set consisting of single vector q1 that spans the same space as {b1}. Trivially, we
can take

1
q1 = b1 . Ib1I

Or, we can express b1 as

b1 = q1Ib1I ,

which is the product of a unit vector and an amplitude.
Now we consider a set which consists of the first two columns of B, {b1, b2}. Our objective is

to construct an orthonormal set {q1, q2} that spans the same space as {b1, b2}. In particular, we
will keep the q1 we have constructed in the first step unchanged, and choose q2 such that (i) it is
orthogonal to q1, and (ii) {q1, q2} spans the same space as {b1, b2}. To do this, we can start with
b2 and first remove the component in the direction of q1, i.e.

T q̃2 = b2 − (q1 b2)q1 .

THere, we recall the fact that the inner product q1 b2 is the component of b2 in the direction of q1.
We can easily confirm that q̃2 is orthogonal to q1, i.e.

T T T T T T T T q1 q̃2 = q1 (b2 − (q1 b2)q1) = q1 b2 − (q1 b2)q1 q1 = q1 b2 − (q1 b2) · 1 = 0 .

Finally, we normalize q̃2 to yield the unit length vector

q2 = q̃2/Iq̃2I .

With some rearrangement, we see that b2 can be expressed as

b2 = (q1
Tb2)q1 + q̃2 = (q1

Tb2)q1 + Iq̃2Iq2 .

Using a matrix-vector product, we can express this as

Tq1 b2b2 = q1 q2 . Iq̃2I

Combining with the expression for b1, we have

TIb1I q1 b2b1 b2 = q1 q2 . Iq̃2I

In two steps, we have factorized the first two columns of B into an m × 2 orthogonal matrix
(q1, q2) and a 2 × 2 upper triangular matrix. The Gram-Schmidt procedure consists of repeating
the procedure n times; let us show one more step for clarity.

In the third step, we consider a set which consists of the first three columns of B, {b1, b2, b3}.
Our objective it to construct an orthonormal set {q1, q2, q3}. Following the same recipe as the
second step, we keep q1 and q2 unchanged, and choose q3 such that (i) it is orthogonal to q1 and q2,
and (ii) {q1, q2, q3} spans the same space as {b1, b2, b3}. This time, we start from b3, and remove
the components of b3 in the direction of q1 and q2, i.e.

T T q̃3 = b3 − (q1 b3)q1 − (q2 b3)q2 .

252

T TAgain, we recall that q1 b3 and q2 b3 are the components of b3 in the direction of q1 and q2, respec
tively. We can again confirm that q̃3 is orthogonal to q1

1 0
T T T T T T T T T q1 q̃3 = q1 (b3 − (q1 b3)q1 − (q2 b3)q2) = q1 b3 − (q1 b3)q1 q1 − (q2 b3)q1 q2 = 0

and to q2

0 1
T T T T T T T T T q2 q̃3 = q2 (b3 − (q1 b3)q1 − (q2 b3)q2) = q2 b3 − (q1 b3)q2 q1 − (q2 b3)q2 q2 = 0 .

We can express b3 as

T Tb3 = (q1 b3)q1 + (q2 b3)q2 + Iq̃3Iq3 .

Or, putting the first three columns together ⎞⎛

b1 b2 b3 = q1 q2 q3
⎜⎝

T TIb1I q1 b2 q1 b3
TIq̃2I q2 b3

⎟⎠ .
Iq̃3I

We can see that repeating the procedure n times would result in the complete orthogonalization of
the columns of B.

Let us count the number of operations of the Gram-Schmidt procedure. At j-th step, there are
j − 1 components to be removed, each requiring of 4m operations. Thus, the total operation count
is mn

CGram-Schmidt ≈ 2(j − 1)4m ≈ 2mn .
j=1

Thus, for solution of the least-squares problem, the method based on Gram-Schmidt is approx
imately twice as expensive as the method based on normal equation for m » n. However, the
superior numerical stability often warrants the additional cost.

We note that there is a modified version of Gram-Schmidt, called the modified Gram-Schmidt
procedure, which is more stable than the algorithm presented above. The modified Gram-Schmidt
procedure requires the same computational cost. There is also another fundamentally different QR
factorization algorithm, called the Householder transformation, which is even more stable than the
modified Gram-Schmidt procedure. The Householder algorithm requires approximately the same
cost as the Gram-Schmidt procedure.

End Advanced Material

Begin Advanced Material

17.3.4 Interpretation of Least Squares: Projection

So far, we have discussed a procedure for solving an overdetermined system,

Bz = g ,

in the least-squares sense. Using the column interpretation of matrix-vector product, we are looking
for the linear combination of the columns of B that minimizes the 2-norm of the residual — the

253

�
��*

�
��*

��
�*

��
�*

mismatch between a representation Bz and the data g. The least-squares solution to the problem
is

∗ BTBz ∗ = BT g ⇒ z = (BTB)−1BT g .

That is, the closest approximation of the data g using the columns of B is
LS g = P LS g = Bz ∗ = B(BTB)−1BT g .

Our best representation of g, gLS, is the projection of g by the projector P LS . We can verify that
the operator P LS = B(BTB)−1BT is indeed a projector:

(P LS)2 = (B(BTB)−1BT)2 = B(BTB)−1BTB(BTB)−1BT = B ((BTB)−1BTB)(BTB)−1BT ' v "
I

= P LS = B(BTB)−1BT .

In fact, P LS is an orthogonal projector because P LS is symmetric. This agrees with our intuition;
the closest representation of g using the columns of B results from projecting g onto col(B) along
a space orthogonal to col(B). This is clearly demonstrated for R2 in Figure 17.5 considered earlier.

Using the orthogonal projector onto col(B), P LS , we can think of another interpretation of
least-squares solution. We first project the data g orthogonally to the column space to form

LS = P LS g g .

Then, we find the coefficients for the linear combination of the columns of B that results in P LSg,
i.e.

= P LSBz ∗ g .

This problem has a solution because P LSg ∈ col(B).
This interpretation is useful especially when the QR factorization of B is available. If B = QR,

then col(B) = col(Q). So, the orthogonal projector onto col(B) is the same as the orthogonal
projector onto col(Q) and is given by

P LS = QQT .

We can verify that P LS is indeed an orthogonal projector by checking that it is (i) idempotent
(P LSP LS = P LS), and (ii) symmetric ((P LS)T = P LS), i.e.

QT = P LS P LSP LS = (QQT)(QQT) = QQTQ = QQT ,' v "
I

= P LS(P LS)T = (QQT)T = (QT)TQT = QQT .

Using the QR factorization of B, we can rewrite the least-squares solution as

= P LSBz ∗ g ⇒ QRz ∗ = QQT g .

Applying QT on both sides and using the fact that QTQ = I, we obtain

Rz ∗ = QT g .

Geometrically, we are orthogonally projecting the data g onto col(Q) but representing the projected
solution in the basis {qi}n of the n-dimensional space (instead of in the standard basis of Rm).i=1

∗Then, we find the coefficients z that yield the projected data.

End Advanced Material

254

Begin Advanced Material

17.3.5 Error Bounds for Least Squares

Perhaps the most obvious way to measure the goodness of our solution is in terms of the residual
Ig − Bz∗I which indicates the extent to which the equations Bz∗ = g are satisfied — how well Bz∗

∗predicts g. Since we choose z to minimize Ig − Bz∗I we can hope that Ig − Bz∗I is small. But
it is important to recognize that in most cases g only reflects data from a particular experiment

∗whereas we would like to then use our prediction for z in other, different, experiments or even
contexts. For example, the friction coefficient we measure in the laboratory will subsequently be
used “in the field” as part of a larger system prediction for, say, robot performance. In this sense,
not only might the residual not be a good measure of the “error in z,” a smaller residual might
not even imply a “better prediction” for z. In this section, we look at how noise and incomplete
models (bias) can be related directly to our prediction for z.

Note that, for notational simplicity, we use subscript 0 to represent superscript “true” in this
section.

Error Bounds with Respect to Perturbation in Data, g (constant model)

Let us consider a parameter fitting for a simple constant model. First, let us assume that there is
a solution z0 to the overdetermined system ⎞⎛⎞⎛

1 ⎜⎜⎜⎜⎝

1
. . .

⎟⎟⎟⎟⎠
z0 =

⎜⎜⎜⎜⎝

g0,1
g0,2
. . .

⎟⎟⎟⎟⎠
.

1 g0,m "'"' v v
B g0

Because z0 is the solution to the system, g0 must be a constant multiple of B. That is, the entries
of g0 must all be the same. Now, suppose that the data is perturbed such that g = g0. With
the perturbed data, the overdetermined system is unlikely to have a solution, so we consider the

∗least-squares solution z to the problem

Bz = g .

We would like to know how much perturbation in the data g − g0 changes the solution z ∗ − z0.
To quantify the effect of the perturbation, we first note that both the original solution and the

solution to the perturbed system satisfy the normal equation, i.e.

BTBz0 = BT g0 and BTBz ∗ = BT g .

Taking the difference of the two expressions, we obtain

BTB(z ∗ − z0) = BT(g − g0) .

For B with the constant model, we have BTB = m, simplifying the expression to

z ∗ − z0 =
1
BT(g − g0)

m
1 mm

= (g − g0)i .
m

i=1

255

∗Thus if the “noise” is close to zero-mean, z is close to Z0. More generally, we can show that

1 |z ∗ − z0| ≤ √ Ig − g0I .
m

We see that the deviation in the solution is bounded by the perturbation data. Thus, our least
∗ squares solution z is a good approximation as long as the perturbation Ig − g0I is small.

To prove this result, we apply the Cauchy-Schwarz inequality, i.e.

1 1 1 √ 1 |z ∗ − z0| = |BT(g − g0)| ≤ IBI Ig − g0I = mIg − g0I = √ Ig − g0I .
m m m m

Recall that the Cauchy-Schwarz inequality gives a rather pessimistic bound when the two vectors
are not very well aligned.

Let us now study more formally how the alignment of the two vectors B and g − g0 affects the
error in the solution. To quantify the effect let us recall that the least-squares solution satisfies

= P LSBz ∗ g ,

where P LS is the orthogonal projector onto the column space of B, col(B). If g − g0 is exactly zero
mean, i.e.

mm1
(g0,i − gi) = 0 ,

m
i=1

then g − g0 is orthogonal to col(B). Because any perturbation orthogonal to col(B) lies in the
direction along which the projection is performed, it does not affect P LSg (and hence Bz∗), and in

∗ ∗particular z . That is, the least-squares solution, z , to

Bz = g = g0 + (g − g0)

is z0 if g − g0 has zero mean. We can also show that the zero-mean perturbation has no influence
in the solution algebraically using the normal equation, i.e.

g0 +���
���� 0

BTBz ∗ = BT(g0 + (g − g0)) = BT BT(g − g0) = BT g0 .

∗The perturbed data g does not enter the calculation of z if g − g0 has zero mean. Thus, any error
in the solution z − z0 must be due to the non-zero-mean perturbation in the data. Consequently,
the bound based on the Cauchy-Schwarz inequality is rather pessimistic when the perturbation is
close to zero mean.

Error Bounds with Respect to Perturbation in Data, g (general)

Let us now generalize the perturbation analysis to a general overdetermined system,

Bz0 = g0 ,

where B ∈ Rm×n with m > n. We assume that g0 is chosen such that the solution to the linear
system exists. Now let us say measurement error has corrupted g0 to g = g0 + E. In particular, we
assume that the linear system

Bz = g

256

∗does not have a solution. Thus, we instead find the least-squares solution z of the system.
To establish the error bounds, we will first introduce the concept of maximum and minimum

singular values, which help us characterize the behavior of B. The maximum and minimum singular
values of B are defined by

IBvI IBvI
νmax(B) = max and νmin(B) = min .

v∈Rn IvI v∈Rn IvI

Note that, because the norm scales linearly under scalar multiplication, equivalent definitions of
the singular values are

νmax(B) = max IBvI and νmin(B) = min IBvI .
v∈Rn v∈Rn

IvI=1 IvI=1

In other words, the maximum singular value is the maximum stretching that B can induce to a
unit vector. Similarly, the minimum singular value is the maximum contraction B can induce.
In particular, recall that if the columns of B are not linearly independent, then we can find a
non-trivial v for which Bv = 0. Thus, if the columns of B are linearly dependent, νmin(B) = 0.

We also note that the singular values are related to the eigenvalues of BTB. Recall that 2-norm
is related to the inner product by

IBvI2 = (Bv)T(Bv) = v TBTBv ,

thus, from the Rayleigh quotient, the square root of the maximum and minimum eigenvalues of
BTB are the maximum and minimum singular values of B.

Let us quantify the sensitivity of the solution error to the right-hand side in two different
manners. First is the absolute conditioning, which relates Iz ∗ − z0I to Ig − g0I. The bound is given
by

Iz ∗ − z0I ≤
1 Ig − g0I .

νmin(B)

Second is the relative conditioning, which relates the relative perturbation in the solution Iz ∗ −
z0I/Iz0I and the relative perturbation in the right-hand side Ig − g0I/Ig0I. This bound is give by

Iz ∗ − z0I νmax(B) Ig − g0I
= .

Iz0I νmin(B) Ig0I

We derive these results shortly.
If the perturbation Ig − g0I is small, we expect the error Iz ∗ − z0I to be small as long as B

is well-conditioned in the sense that νmax(B)/νmin(B) is not too large. Note that if B has linearly
dependent columns, then νmin = 0 and νmax/νmin is infinite; thus, νmax/νmin is a measure of the
independence of the columns of B and hence the extent to which we can independently determine
the different elements of z. More generally, νmax/νmin is a measure of the sensitivity or stability of
our least-squares solutions to perturbations (e.g. in g). As we have already seen in this chapter,
and will see again in Chapter 19 within the regression context, we can to a certain extent “control”
B through the choice of variables, functional dependencies, and measurement points; we can thus
strive to control νmax/νmin through good “independent” choices and thus ensure good prediction
of z.

Example 17.3.4 Measurement Noise in Polynomial Fitting
Let us demonstrate the effect of perturbation in g — or the measurement error — in the context

257

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y

||g−g
0
||=0.223

||z−z
0
||=0.072

y
meas

y(z
0
(g

0
))

y(z
*
(g))

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y

||g−g
0
||=0.022

||z−z
0
||=0.007

y
meas

y(z
0
(g

0
))

y(z
*
(g))

(a) large perturbation (b) small perturbation

Figure 17.6: The effect of data perturbation on the solution.

of polynomial fitting we considered earlier. As before, we assume that the output depends on the
input quadratically according to

1 2 1 2 y(x) = − + x − cx ,
2 3 8

with c = 1. We construct clean data g0 ∈ Rm , m = 7, by evaluating y at

xi = (i − 1)/2, i = 1, . . . ,m ,

and setting

g0,i = y(xi), i = 1, . . . ,m .

Because g0 precisely follows the quadratic function, z0 = (−1/2, 2/3, −1/8) satisfies the overdeter
mined system Bz0 = g0. Recall that B is the m × n Vandermonde matrix with the evaluation
points {xi}.

We then construct perturbed data g by adding random noise to g0, i.e.

gi = g0,i + Ei, i = 1, . . . ,m .

∗Then, we solve for the least-squares solution z of Bz∗ = g.
The result of solving the polynomial fitting problem for two different perturbation levels is

shown in Figure 17.6. For the large perturbation case, the perturbation in data and the error in
the solution — both measured in 2-norm — are

Ig − g0I = 0.223 and Iz − z0I = 0.072 .

In contrast, the small perturbation case produces

Ig − g0I = 0.022 and Iz − z0I = 0.007 .

The results confirm that a smaller perturbation in data results in a smaller error in the solution.

258

We can also verify the error bounds. The minimum singular value of the Vandermonde matrix
is

νmin(B) = 0.627 .

Application of the (absolute) error bound to the large perturbation case yields
1

0.072 = Iz − z0I ≤ Ig − g0I = 0.356 .
νmin(B)

The error bound is clearly satisfied. The error bound for the small perturbation case is similarly
satisfied.

·

We now prove the error bounds.

Proof. To establish the absolute error bound, we first note that the solution to the clean problem,
z0, and the solution to the perturbed problem, z ∗, satisfy the normal equation, i.e.

BTBz0 = BT g0 and BTBz ∗ = BT g .

Taking the difference of the two equations

BTB(z ∗ − z0) = BT(g − g0) .

Now, we multiply both sides by (z ∗ − z0)T to obtain

(LHS) = (z ∗ − z0)TBTB(z ∗ − z0) = (B(z ∗ − z0))T(B(z ∗ − z0)) = IB(z ∗ − z0)I2

(RHS) = (z ∗ − z0)TBT(g − g0) = (B(z ∗ − z0))T(g − g0) ≤ IB(z ∗ − z0)IIg − g0I ,

where we have invoked the Cauchy-Schwarz inequality on the right-hand side. Thus, we have

IB(z ∗ − z0)I2 ≤ IB(z ∗ − z0)IIg − g0I ⇒ IB(z ∗ − z0)I ≤ Ig − g0I .

We can bound the left-hand side from below using the definition of the minimum singular value

νmin(B)Iz ∗ − z0I ≤ IB(z ∗ − z0)I .

Thus, we have

νminIz ∗ − z0I ≤ IB(z ∗ − z0)I ≤ Ig − g0I ⇒ Iz ∗ − z0I ≤
1 Ig − g0I ,

νmin(B)

which is the desired absolute error bound.
To obtain the relative error bound, we first divide the absolute error bound by Iz0I to obtain

Iz ∗ − z0I 1 Ig − g0I 1 Ig − g0I Ig0I ≤ = .
Iz0I νmin(B) Iz0I νmin(B) Ig0I Iz0I

To bound the quotient Ig0I/Iz0I, we take the norm of both sides of Bz0 = g0 and invoke the
definition of the maximum singular value, i.e.

Ig0I Ig0I = IBz0I ≤ νmaxIz0I ⇒ ≤ νmax . Iz0I

259

� �

Substituting the expression to the previous bound

Iz ∗ − z0I 1 Ig − g0I Ig0I νmax(B) Ig − g0I ≤ ≤ ,
Iz0I νmin(B) Ig0I Iz0I νmin(B) Ig0I

which is the desired relative error bound.

Proof (using singular value decomposition). We start with the singular value decomposition of ma
trix B,

B = UΣV T ,

where U is an m × m unitary matrix, V is an n × n unitary matrix, and Σ is an m × n diagonal
matrix. In particular, Σ consists of singular values of B and is of the form ⎞⎛

Σ =

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν1
ν2

. . .
νn

⎟⎟⎟⎟⎟⎟⎟⎟⎠

 Σ
= .

0

The singular value decomposition exists for any matrix. The solution to the original problem is
given by

Bz = g ⇒ UΣV T z = g ⇒ ΣV T z = UT g .

The solution to the least-squares problem is

∗ z = arg min IBz − gI = arg min IUΣV T z − gI = arg min IΣV T z − UT gI
z z z

= V arg min IΣz̃ − g̃I ,
z̃

where the third equality follows from the fact that the action by an unitary matrix does not alter
the 2-norm, and we have made the substitutions z̃ = V Tz and g̃ = UTg. We note that because Σ
is diagonal, the 2-norm to be minimized is particularly simple, ⎞⎛⎞⎛

−

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g̃1
. . .
g̃n
g̃n+1
. . .
g̃m

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

ν1

Σz̃ − g̃ = Σ =

⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞ . . z̃1. ⎜⎜⎝
⎟⎟⎠

νn . . .
z̃n

260

()

()

� �

� � � � � �

Note that choosing z̃1, . . . , z̃n only affects the first n component of the residual vector. Thus, we
should pick z̃1, . . . , z̃n such that ⎞⎛⎞⎛⎞⎛

ν1 z̃1 g̃1⎜⎜⎝
. . .

⎜⎜⎝
⎟⎟⎠

. . .
⎟⎟⎠ =

⎜⎜⎝
. . .

⎟⎟⎠ ⇒ z̃i =
g̃i
, i = 1, . . . , n .

νi
νn z̃n g̃n

By introducing a n × m restriction matrix that extracts the first n entries of g̃, we can concisely
write the above as

Σz̃ = Rg̃ ⇒ z̃ = Σ−1Rg̃ ,

and the solution to the least-squares problem as

∗ ∗ z = V z̃ = V Σ−1Rg̃ = V Σ−1RUT g .

The absolute condition number bound is obtained by

IV Σ−1RUT(g − g0)I Iz ∗ − z0I = IV Σ−1RUT(g − g0)I = Ig − g0I
Ig − g0I

IV Σ−1RUTδgI ≤ sup Ig − g0I .
δg IδgI

The term in the parenthesis is bounded by noting that orthogonal transformations preserve the
2-norm and that the restriction operator does not increase the 2-norm, i.e.

IV Σ−1RUTδgI IV Σ−1Rδg̃I IΣ−1Rδg̃I 1
sup = sup = sup ≤ .
δg IδgI δg̃ IUδg̃I δg̃ Iδg̃I νmin(B)

Thus, we have the desired absolute error bound

Iz ∗ − z0I ≤
1 Ig − g0I .

νmin(B)

Now let us consider the relative error bound. We first note that

Iz ∗ − z0I 1 1 1 Ig − g0I Ig0I
= Ig − g0I = .

Iz0I νmin(B) Iz0I νmin(B) Ig0I Iz0I

The term Ig0I/Iz0I can be bounded by expressing z0 in terms of g using the explicit expression
for the least-squares solution, i.e.

Ig0I IBz0I IUΣV Tz0I IUΣV TzI IUΣz̃I IΣz̃I
= = ≤ sup = sup = sup = νmax(B) .

Iz0I Iz0I Iz0I z IzI z̃ IV z̃I z̃ Iz̃I

Thus, we have the relative error bound

Iz ∗ − z0I νmax(B) Ig − g0I ≤ .
Iz0I νmin(B) Ig0I

This concludes the proof.

261

̂ ̂
̂ ̂

̂ ̂
(̂)

(̂) (̂) (̂)

� �

Error Bounds with Respect to Reduction in Space, B

Let us now consider a scenario that illustrates the effect of bias. Again, we start with an overde
termined linear system,

B0z0 = g ,

where B0 ∈ Rm×n with m > n. We assume that z0 satisfies all m equations. We recall that, in the
context of polynomial fitting, B0 is of the form, ⎞⎛

B0 =
⎜⎜⎜⎜⎝

1 x1 x2 · · · xn
1 1
2 n1 x2 x2 · · · x2

.
1 xm x2 · · · xn

m m

⎟⎟⎟⎟⎠
,

where m is the number of data points and n is the degree of polynomial. Now, suppose that we
decide to use a p-th degree polynomial rather than the n-th degree polynomial, where p < n. In
other words, we can partition B0 into ⎞⎛

B0 = BI BII =
⎜⎜⎜⎜⎝

p11 x · · · x1 1
1 p1 x · · · x2 2

.
p1 x1 · · · xmm

p+1 nx · · · x1 1
p+1 nx · · · x2 m

,
p+1 n
mx · · · xm

⎟⎟⎟⎟⎠

where BI ∈ Rm×(p+1) and BII ∈ Rm×(n−p). Then we can solve the least-squares problem resulting
from the first partition, i.e.

∗ BIz = g .

For convenience, let us also partition the solution to the original system z0 into two parts corre
sponding to BI and BII, i.e.

zI z0 = ,
zII

∗where zI ∈ Rp+1 and zII ∈ Rn−p. The question is, how close are the coefficients z = (z1, . . . , zp−1)
of the reduced system compared to the coefficients of the first partition of the original system, zI?

We can in fact bound the error in the solution Iz ∗ − zII in terms of the “missing space” BII.
In particular, the absolute error bound is given by

Iz ∗ − zII ≤
1 IBIIzIII

νmin(BI)

and the relative error bound is given by

Iz ∗ − zII νmax(BI) IBIIzIII ≤ ,
IzII νmin(BI) Ig − BIIzIII

where νmin(BI) and νmax(BI) are the minimum and maximum singular values of BI.

262

()

()

.

Example 17.3.5 Bias Effect in Polynomial Fitting
Let us demonstrate the effect of reduced solution space — or the bias effect — in the context of
polynomial fitting. As before, the output depends on the input quadratically according to

1 2 1 2 y(x) = − + x − cx .
2 3 8

Recall that c controls the strength of quadratic dependence. The data g is generated by evaluating y
at xi = (i−1)/2 and setting gi = y(xi) for i = 1, . . . ,m, with m = 7. We partition our Vandermonde
matrix for the quadratic model B0 into that for the affine model BI and the quadratic only part
BII, i.e. ⎞⎛⎞⎛

21 x1 x2 1 x1 x1 1

B0 =
⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
= BI BII .

2
2

2
21 x2 x 1 xx2

=
.

21 xm x2 1 xm xm m

As before, because the underlying data is quadratic, we can exactly match the function using the
full space B0, i.e., B0z0 = g.

∗ ∗Now, we restrict ourselves to affine functions, and find the least-squares solution z to BIz = g.
We would like to quantify the difference in the first two coefficients of the full model zI and the

∗coefficients of the reduced model z .
Figure 17.7 shows the result of fitting an affine function to the quadratic function for c = 1

and c = 1/10. For the c = 1 case, with the strong quadratic dependence, the effect of the missing
quadratic function is

IBIIzIII = 1.491 .

This results in a relative large solution error of

Iz ∗ − zII = 0.406 .

We also note that, with the minimum singular value of νmin(BI) = 1.323, the (absolute) error bound
is satisfied as

0.406 = Iz ∗ − zII ≤
1 IBIIzII I = 1.1267 .

νmin(BI)

In fact, the bound in this particular case is reasonable sharp.
∗Recall that the least-squares solution z minimizes the £2 residual

0.286 = IBIz ∗ − gI ≤ IBIz − gI, ∀ z ∈ R2 ,

and the residual is in particular smaller than that for the truncated solution

IBIzI − gI = 1.491 .

However, the error for the least-squares solution — in terms of predicting the first two coefficients
of the underlying polynomial — is larger than that of the truncated solution (which of course is
zero). This case demonstrates that minimizing the residual does not necessarily minimize the error.

For the c = 1/10 with a weaker quadratic dependence, the effect of missing the quadratic
function is

IBIIzIII = 0.149

263

()

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

||B
II
z

II
||=1.491

||z
*
−z

I
||=0.406

y
meas

y(z
0
(B

0
))

y(z
*
(B

I
))

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

x

y

||B
II
z

II
||=0.149

||z
*
−z

I
||=0.041

y
meas

y(z
0
(B

0
))

y(z
*
(B

I
))

(a) c = 1 (b) c = 1/10

Figure 17.7: The effect of reduction in space on the solution.

and the error in the solution is accordingly smaller as

Iz ∗ − zII = 0.041 .

This agrees with our intuition. If the underlying data exhibits a weak quadratic dependence, then
we can represent the data well using an affine function, i.e., IBIIzIII is small. Then, the (absolute)
error bound suggests that the small residual results in a small error.

·

We now prove the error bound.

Proof. We rearrange the original system as

B0z0 = BIzI + BIIzII = g ⇒ BIzI = g − BIIzII .

By our assumption, there is a solution zI that satisfies the m × (p + 1) overdetermined system

BIzI = g − BIIzII .

The reduced system,

∗ BIz = g ,

does not have a solution in general, so is solved in the least-squares sense. These two cases are
identical to the unperturbed and perturbed right-hand side cases considered the previous subsection.
In particular, the perturbation in the right-hand side is

Ig − (g − BIIzII)I = IBIIzIII ,

and the perturbation in the solution is Iz ∗ −zII. Substitution of the perturbations into the absolute
and relative error bounds established in the previous subsection yields the desired results.

264

End Advanced Material

265

266

Chapter 18

Matlab Linear Algebra (Briefly)

18.1 Matrix Multiplication (and Addition)

We can think of a hypothetical computer (or scripting) language in which we must declare a
“tableau” of m by n numbers to be either a double-index array or a matrix; we also introduce
a hypothetical “multiplication” operator #. (Note that # is not an actual Matlab multiplication
character/operator — it is introduced here solely for temporary pedagogical purposes.) In the case
in which we (say) declare A and B to be arrays then the product C = A # B would be automatically
interpreted as element-by-element multiplication: both A and B must be of the same size m × n
for the operation to make sense, and the result C would of course also be of size m × n. In the
case in which we declare A and B to be matrices then the product A # B would be automatically
interpreted as matrix-matrix multiplication: if A is m1 by n1 and B is m2 by n2 then n1 must
equal m2 for the operation to make sense and the product C = A # B would be of dimensions
m1 × n2. This is a very simple example of object-oriented programming in which an operation, say
multiplication, is defined — in potentially different ways — for different classes of objects (in our
case here, arrays and matrices) — but we could also envision an extension to functions and other
entities as well. This model for programming languages and abstraction can be very powerful for
a variety of reasons.

However, in some cases such abstraction can arguably be more of a burden than a blessing.
For example, in Matlab we often wish to re-interpret arrays as matrices or matrices as arrays on
many different occasions even with a single code or application. To avoid conversion issues between
these two classes, Matlab prefers to treat arrays and matrices as (effectively) a single class and
then to distinguish the two options for multiplication through special operators. In particular, as
we already know, element-by-element multiplication of two arrays is effected by the .* operator —
C = A.*B forms C as the element-by-element product of A and B; matrix-matrix multiplication (in
the sense of linear algebra) is then effected simply by * — C = A*B forms C as the matrix product
of A and B. In fact, the emphasis in Matlab at least historically is on linear algebra, and thus
matrix multiplication is in some sense the default; element-by-element operations are the “special
case” and require the “dotted operators.”

In principle, we should also need to distinguish element-by-element addition and subtraction as
.+ and .- from matrix-matrix addition and subtraction as + and -. However, element-by-element
addition and subtraction and matrix-matrix addition and subtraction are identical — both in terms

267

DRAFT V1.2 © The Authors. License: Creative Commons BY-NC-SA 3.0 .

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

of the requirements on the operands and on the result of the operation — and hence it suffices to
introduce only a single addition and subtraction operator, + and -, respectively. (In particular,
note that there are no operators .+ and .- in Matlab.) In a similar fashion, we need only a single
transpose operator, ', which is directly applicable to both arrays and matrices.2

It thus follows that the matrix-matrix addition, subtraction, multiplication, and transpose are
effected in Matlab in essentially the same way as we would write such operations in the linear
algebra context: in the addition or subtraction of two vectors x and y, the x + y and x − y of linear
algebra becomes x + y and x - y in Matlab; in the multiplication of two matrices A and B, the
AB of linear algebra becomes A*B in Matlab; and in the transpose of a matrix (or vector) M , the
MT of linear algebra becomes M' in Matlab.

Of course, you could also always implement these matrix operations in Matlab “explicitly”
with for loops and appropriate indexing: for example, z = x + y could be implemented as

z = 0.*x; % initialize z to be same size as x
for i = 1:length(x)

z(i) = x(i) + y(i);
end
however this leads to code which is both much less efficient and also much longer and indeed much
less readable (and hence de-buggable). (Note also that the above does not yet contain any check
on dimensions or error flags.) We have already discussed the power of function abstraction. In the
case of these very ubiquitous functions — standard array and matrix manipulations — Matlab
provides the further convenience of special characters and hence very simple syntax. (Note that
as these special characters are, as always, just an easy way to invoke the underlying Matlab
operator or function: for example, the element-by-element multiplication operation A.*B can also
be written (but less conveniently) as times(A,B), and the matrix-matrix multiplication A*B can
also be written as mtimes(A,B).)

We close with a simple example to again illustrate the differences between array and matrix
operations. We introduce two column vectors x = (1 1)T and y = (2 2)T which in Matlab
we express as x = [1; 1] and y = [2; 2]. (Note the distinction: parentheses for vectors and
matrices in the linear algebra context, brackets for vectors and matrices in Matlab; parentheses in
Matlab are used for indexing and function calls, not to define a vector or matrix.) We may then
perform the linear algebra operation of inner product, α = xTy, in two fashions: with element-by
element multiplication (and hence times) as alpha = sum(x.*y); with matrix multiplication (and
hence mtimes) as alpha_too = x'*y.

18.2 The Matlab Inverse Function: inv

This section is short. Given a non-singular square matrix A, A in Matlab, we can find A−1 in
Matlab as inv(A) (which of course may also be assigned to a new matrix, as in Ainv = inv(A)).
To within round-off error we can anticipate that inv(A)*A and A*inv(A) should both evaluate to
the identity matrix. (In finite-precision arithmetic, of course we will not obtain exactly an identity

2 In fact, the array transpose and the matrix transpose are different: the array transpose is given by .' and
switches rows and columns; the matrix transpose is given by ' and effects the conjugate, or Hermitian transpose,
in which AH = and refers to the complex conjugate. The Hermitian transpose (superscript H) is the correct ij Aij

generalization from real matrices to complex matrices in order to ensure that all our linear algebra concepts (e.g.,
norm) extend correctly to the complex case. We will encounter complex variables in Unit IV related to eigenvalues.
Note that for real matrices we can use either ' (array) or .' (matrix) to effect the (Hermitian) matrix transpose since
the complex conjugate of a real number is simply the real number.

268

matrix; however, for “well-conditioned” matrices we should obtain a matrix which differs from the
identity by roughly machine precision.)

As we have already discussed, and as will be demonstrated in Unit V, the inv operation is quite
expensive, and in most cases there are better ways to achieve any desired end than through a call
to inv. Nevertheless for small systems, and in cases in which we do explicitly require the inverse
for some reason, the inv function is very convenient.

18.3 Solution of Linear Systems: Matlab Backslash

We now consider a system of n linear equations in n unknowns: Ax = b. We presume that the
matrix A is non-singular such that there is indeed a solution, and in fact a unique solution, to this
system of equations. We know that we may write this solution if we wish as x = A−1b. There are
two ways in which we find x in Matlab. Actually, more than two ways: we restrict attention to
the most obvious (and worst) and then the best.

As our first option we can simply write x = inv(A)*b. However, except for small systems, this
will be unnecessarily expensive. This “inverse” approach is in particular very wasteful in the case
in which the matrix A is quite sparse — with many zeros — a situation that arises very (very)
often in the context of mechanical engineering and physical modeling more generally. We discuss
the root cause of this inefficiency in Unit V.

As our second option we can invoke the Matlab “backslash” operator \ (corresponding to the
function mldivide) as follows: x = A \ b. This backslash operator is essentially a collection of
related (direct) solution options from which Matlab will choose the most appropriate based on
the form of A; these options are all related to the “LU” decomposition of the matrix A (followed
by forward and back substitution), as we will discuss in greater detail in Unit V. Note that these
LU approaches do not form the inverse of A but rather directly attack the problem of solution of
the linear system. The Matlab backslash operator is very efficient not only due to the algorithm
chosen but also due to the careful and highly optimized implementation.

18.4 Solution of (Linear) Least-Squares Problems

In Chapter 17 we considered the solution of least squares problems: given B ∈ Rm×n and g ∈ Rm

∗ ∗find z ∈ Rn which minimizes IBz − gI2 over all z ∈ Rn . We showed that z satisfies the normal
equations, Nz∗ = BTg, where N ≡ BTB. There are (at least) three ways we can implement this
least-squares solution in Matlab.

The first, and worst, is to write zstar = inv(B'*B)*(B'*g). The second, and slightly better,
is to take advantage of our backslash operator to write zstar_too = (B'*B)\(B'*g). However,
both of the approaches are less than numerically stable (and more generally we should avoid taking
powers of matrices since this just exacerbates any intrinsic conditioning or “sensitivity” issues).
The third option, and by far the best, is to write zstar_best = B\g. Here the backslash operator
“recognizes” that B is not a square matrix and automatically pursues a least-squares solution based
on the stable and efficient QR decomposition discussed in Chapter 17.

Finally, we shall see in Chapter 19 on statistical regression that some elements of the matrix
(BTB)−1 will be required to construct confidence intervals. Although it is possible to efficiently cal
culate certain select elements of this inverse matrix without construction of the full inverse matrix,
in fact our systems shall be relatively small and hence inv(B'*B) is quite inexpensive. (Neverthe
less, the solution of the least-squares problem is still best implemented as zstar_best = B \ g,
even if we subsequently form the inverse inv(B'*B) for purposes of confidence intervals.)

269

270

Chapter 19

Regression: Statistical Inference

19.1 Simplest Case

Let us first consider a “simple” case of regression, where we restrict ourselves to one independent
variable and linear basis functions.

19.1.1 Friction Coefficient Determination Problem Revisited

Recall the friction coefficient determination problem we considered in Section 17.1. We have seen
that in presence of m perfect measurements, we can find a µs that satisfies m equations

F max, meas = µs Fnormal, applied i, i = 1, . . . ,m . f, static i

In other words, we can use any one of the m-measurements and solve for µs according to

F max, meas
f, static i

µs,i = ,
Fnormal, applied i

and all µs,i, i = 1, . . . ,m, will be identical and agree with the true value µs.
Unfortunately, real measurements are corrupted by noise. In particular, it is unlikely that we

can find a single coefficient that satisfies all m measurement pairs. In other words, µs computed
using the m different pairs are likely not to be identical. A more suitable model for static friction
that incorporates the notion of measurement noise is

F max, meas
f, static = µs Fnormal, applied + E .

The noise associated with each measurement is obviously unknown (otherwise we could correct the
measurements), so the equation in the current form is not very useful. However, if we make some
weak assumptions on the behavior of the noise, we can in fact:

(a) infer the value of µs with associated confidence,

(b) estimate the noise level,

(c) confirm that our model is correct (more precisely, not incorrect),

(d) and detect significant unmodeled effects.

271

DRAFT V1.2 © The Authors. License: Creative Commons BY-NC-SA 3.0 .

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

This is the idea behind regression — a framework for deducing the relationship between a set
F max, measof inputs (e.g. Fnormal,applied) and the outputs (e.g.) in the presence of noise. Thef, static

regression framework consists of two steps: (i) construction of an appropriate response model, and
(ii) identification of the model parameters based on data. We will now develop procedures for
carrying out these tasks.

19.1.2 Response Model

Let us describe the relationship between the input x and output Y by

Y (x) = Ymodel(x; β) + E(x) , (19.1)

where

(a) x is the independent variable, which is deterministic.

(b) Y is the measured quantity (i.e., data), which in general is noisy. Because the noise is assumed
to be random, Y is a random variable.

(c) Ymodel is the predictive model with no noise. In linear regression, Ymodel is a linear function
of the model parameter β by definition. In addition, we assume here that the model is an
affine function of x, i.e.

Ymodel(x; β) = β0 + β1x ,

where β0 and β1 are the components of the model parameter β. We will relax this affine-in-x
assumption in the next section and consider more general functional dependencies as well as
additional independent variables.

(d) E is the noise, which is a random variable.

Our objective is to infer the model parameter β that best describes the behavior of the measured
quantity and to build a model Ymodel(·; β) that can be used to predict the output for a new x.
(Note that in some cases, the estimation of the parameter itself may be of interest, e.g. deducing
the friction coefficient. In other cases, the primary interest may be to predict the output using
the model, e.g. predicting the frictional force for a given normal force. In the second case, the
parameter estimation itself is simply a means to the end.)

As considered in Section 17.1, we assume that our model is unbiased . That is, in the absence
of noise (E = 0), our underlying input-output relationship can be perfectly described by

y(x) = Ymodel(x; βtrue)

for some “true” parameter βtrue . In other words, our model includes the true functional dependency
(but may include more generality than is actually needed). We observed in Section 17.1 that if
the model is unbiased and measurements are noise-free, then we can deduce the true parameter,
βtrue, using a number of data points equal to or greater than the degrees of freedom of the model
(m ≥ n).

In this chapter, while we still assume that the model is unbiased1 , we relax the noise-free
assumption. Our measurement (i.e., data) is now of the form

Y (x) = Ymodel(x; βtrue) + E(x) ,

where E is the noise. In order to estimate the true parameter, βtrue, with confidence, we make
three important assumptions about the behavior of the noise. These assumptions allow us to make
quantitative (statistical) claims about the quality of our regression.

1In Section 19.2.4, we will consider effects of bias (or undermodelling) in one of the examples.

272

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

Y

Y
model

f
Y

Figure 19.1: Illustration of the regression process.

(i) Normality (N1): We assume the noise is a normally distributed with zero-mean, i.e., E(x) ∼
N (0, σ2(x)). Thus, the noise E(x) is described by a single parameter σ2(x).

(ii) Homoscedasticity (N2): We assume that E is not a function of x in the sense that the
distribution of E, in particular σ2, does not depend on x.

(iii) Independence (N3): We assume that E(x1) and E(x2) are independent and hence uncorre
lated.

We will refer to these three assumptions as (N1), (N2), and (N3) throughout the rest of the chapter.
These assumptions imply that E(x) = E = N (0, σ2), where σ2 is the single parameter for all instances
of x.

Note that because

Y (x) = Ymodel(x; β) + E = β0 + β1x + E

and E ∼ N (0, σ2), the deterministic model Ymodel(x; β) simply shifts the mean of the normal
distribution. Thus, the measurement is a random variable with the distribution

Y (x) ∼ N (Ymodel(x; β), σ2) = N (β0 + β1x, σ2) .

In other words, when we perform a measurement at some point xi, we are in theory drawing
a random variable from the distribution N (β0 + β1xi, σ2). We may think of Y (x) as a random
variable (with mean) parameterized by x, or we may think of Y (x) as a random function (often
denoted a random process).

A typical regression process is illustrated in Figure 19.1. The model Ymodel is a linear function
of the form β0 + β1x. The probability density functions of Y , fY , shows that the error is normally
distributed (N1) and that the variance does not change with x (N2). The realizations of Y sampled
for x = 0.0, 0.5, 1.0, . . . , 3.0 confirms that it is unlikely for realizations to fall outside of the 3σ bounds
plotted. (Recall that 99.7% of the samples falls within the 3σ bounds for a normal distribution.)

Figure 19.1 suggests that the likely outcome of Y depends on our independent variable x in a
linear manner. This does not mean that Y is a function of x only. In particular, the outcome of
an experiment is in general a function of many independent variables,

x = · · · .x(1) x(2) x(k)

273

()

 But, in constructing our model, we assume that the outcome only strongly depends on the behavior
of x = x(1), and the net effect of the other variables x(2) · · · x(k) can be modeled as random
through E. In other words, the underlying process that governs the input-output relationship may
be completely deterministic if we are given k variables that provides the full description of the
system, i.e.

y(x(1), x(2), . . . , x(k)) = f(x(1), x(2), . . . , x(k)) .

However, it is unlikely that we have the full knowledge of functional dependencies as well as the
state of the system.

Knowing that the deterministic prediction of the output is intractable, we resort to under
standing the functional dependency of the most significant variable, say x(1). If we know that the
dependency of y on x(1) is most dominantly affine (say based on a physical law), then we can split
our (intractable) functional dependency into

y(x(1), x(2), . . . , x(k)) = β0 + β1x(1) + g(x(1), x(2), . . . , x(k)) .

Here g(x(1), x(2), . . . , x(k)) includes both the unmodeled system behavior and the unmodeled process
that leads to measurement errors. At this point, we assume the effect of (x(2), . . . , x(k)) on y and
the weak effect of x(1) on y through g can be lumped into a zero-mean random variable E, i.e.

Y (x(1); β) = β0 + β1x(1) + E .

At some level this equation is almost guaranteed to be wrong .
First, there will be some bias: here bias refers to a deviation of the mean of Y (x) from β0 +β1x(1)

— which of course can not be represented by E which is assumed zero mean. Second, our model for
the noise (e.g., (N1), (N2), (N3)) — indeed, any model for noise — is certainly not perfect. However,
if the bias is small, and the deviations of the noise from our assumptions (N1), (N2), and (N3)
are small, our procedures typically provide good answers. Hence we must always question whether
the response model Ymodel is correct, in the sense that it includes the correct model. Furthermore,
the assumptions (N1), (N2), and (N3) do not apply to all physical processes and should be treated
with skepticism.

We also note that the appropriate number of independent variables that are explicitly modeled,
without being lumped into the random variable, depends on the system. (In the next section,
we will treat the case in which we must consider the functional dependencies on more than one
independent variable.) Let us solidify the idea using a very simple example of multiple coin flips in
which in fact we need not consider any independent variables.

Example 19.1.1 Functional dependencies in coin flips
Let us say the system is 100 fair coin flips and Y is the total number of heads. The outcome of
each coin flip, which affects the output Y , is a function of many variables: the mass of the coin,
the moment of inertia of the coin, initial launch velocity, initial angular momentum, elasticity of
the surface, density of the air, etc. If we had a complete description of the environment, then the
outcome of each coin flip is deterministic, governed by Euler’s equations (for rigid body dynamics),
the Navier-Stokes equations (for air dynamics), etc. We see this deterministic approach renders our
simulation intractable — both in terms of the number of states and the functional dependencies —
even for something as simple as coin flips.

Thus, we take an alternative approach and lump some of the functional dependencies into a
random variable. From Chapter 9, we know that Y will have a binomial distribution B(n = 100, θ =
1/2). The mean and the variance of Y are

E[Y] = nθ = 50 and E[(Y − µY)
2] = nθ(1 − θ) = 25 .

274

()

In fact, by the central limit theorem, we know that Y can be approximated by

Y ∼ N (50, 25) .

The fact that Y can be modeled as N (50, 25) without any explicit dependence on any of the many
independent variables we cited earlier does not mean that Y does not depend on the variables. It
only means that the cumulative effect of the all independent variables on Y can be modeled as a
zero-mean normal random variable. This can perhaps be motivated more generally by the central
limit theorem, which heuristically justifies the treatment of many small random effects as normal
noise.

·

19.1.3 Parameter Estimation

We now perform m experiments, each of which is characterized by the independent variable xi. Each
experiment described by xi results in a measurement Yi, and we collect m variable-measurement
pairs,

(xi, Yi), i = 1, . . . ,m .

In general, the value of the independent variables xi can be repeated. We assume that our mea
surements satisfy

Yi = Ymodel(xi; β) + Ei = β0 + β1xi + Ei .

(βtrue, βtrueFrom the experiments, we wish to estimate the true parameter βtrue =) without the 0 1
precise knowledge of E (which is described by σ). In fact we will estimate βtrue and σ by β̂ and σ̂,
respectively.

It turns out, from our assumptions (N1), (N2), and (N3), that the maximum likelihood estimator
(MLE) for β — the most likely value for the parameter given the measurements (xi, Yi), i = 1, . . . ,m
— is precisely our least squares fit, i.e., β̂ = β∗ . In other words, if we form ⎞⎛⎞⎛

1 Y1x1

X =
⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
and Y =

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠

1 Y2
. . .

x2
,

1 xm Ym

then the MLE, β̂, satisfies

ˆIXβ̂ − Y I2 < IXβ − Y I2, ∀ β = β .

Equivalently, β̂ satisfies the normal equation

(XTX)β̂ = XTY .

We provide the proof.

275

6

Proof. We show that the least squares solution is the maximum likelihood estimator (MLE) for β.
Recall that we consider each measurement as Yi = N (β0 + β1xi, σ2) = N (Xi·β, σ2). Noting the
noise is independent, the m measurement collectively defines a joint distribution,

Y = N (Xβ, Σ) ,

where Σ is the diagonal covariance matrix Σ = diag(σ2, . . . , σ2). To find the MLE, we first form
the conditional probability density of Y assuming β is given, i.e.

1 1
fY |B(y|β) = exp − (y − Xβ)TΣ−1(y − Xβ) ,

(2π)m/1|Σ|1/2 2

which can be viewed as a likelihood function if we now fix y and let β vary — β|y rather than y|β.
The MLE — the β that maximizes the likelihood of measurements {yi}m — is then ⎛

i=1 ⎞

β̂ = arg max
β∈R2

fY |B(y|β) = arg max
β∈R2

1
(2π)m/1|Σ|1/2 exp

⎜⎜⎝ − '

1
2
(y − Xβ)TΣ−1(y − Xβ)

⎟⎟⎠ . " v
J

The maximum is obtained when J is minimized. Thus,

β̂ = arg min J(β) = arg min
1
(y − Xβ)TΣ−1(y − Xβ) .

β∈R2 β∈R2 2

Recalling the form of Σ, we can simplify the expression to

β̂ = arg min
1

(y − Xβ)T(y − Xβ) = arg min (y − Xβ)T(y − Xβ)
β∈R2 2σ2 β∈R2

= arg min Iy − XβI2 .
β∈R2

This is precisely the least squares problem. Thus, the solution to the least squares problem Xβ = y
is the MLE.

Having estimated the unknown parameter βtrue by β̂, let us now estimate the noise E charac
terized by the unknown σtrue . Our estimator for σtrue, σ̂, is

1/21
σ̂ = IY − Xβ̂I2 .

m − 2

Note that IY − Xβ̂I is just the root mean square of the residual as motivated by the least squares
approach earlier. The normalization factor, 1/(m − 2), comes from the fact that there are m
measurement points and two parameters to be fit. If m = 2, then all the data goes to fitting the
parameters {β0, β1} — two points determine a line — and none is left over to estimate the error;
thus, in this case, we cannot estimate the error. Note that

(Xβ̂)i = Ymodel(xi; β)| ˆ ≡ Yiβ=β

ˆis our response model evaluated at the parameter β = β; we may thus write

σ̂ =
1 IY − Y I2

1/2
.

m − 2

276

()

̂
̂

ˆIn some sense, β minimizes the misfit and what is left is attributed to noise σ̂ (per our model).
Note that we use the data at all points, x1, . . . , xm, to obtain an estimate of our single parameter ,
σ; this is due to our homoscedasticity assumption (N2), which assumes that E (and hence σ) is
independent of x.

We also note that the least squares estimate preserves the mean of the measurements in the
sense that

mm1 1 mm
Y ≡ Yi = Yi ≡ Y .

m m
i=1 i=1

Proof. The preservation of the mean is a direct consequence of the estimator β̂ satisfying the normal
equation. Recall, β̂ satisfies

XTXβ̂ = XTY .

Because Y = Xβ̂, we can write this as

XTY = XTY .

Recalling the “row” interpretation of matrix-vector product and noting that the column of X is all
ones, the first component of the left-hand side is ⎞ ⎛

Y1 mm
Ym

i=1

Similarly, the first component of the right-hand side is

⎜⎜⎝
⎟⎟⎠ (XTY)1

. 1 · · · 1 Yi= = . . .

⎞ ⎛
Y1 mm
Ym i=1

Thus, we have

⎜⎜⎝
⎟⎟⎠ (XTY)1

. 1 · · · 1 Yi= = . . .

mm mm
(XTY)1 = (XTY)1 ⇒ Yi = Yi ,

i=1 i=1

which proves that the model preserves the mean.

19.1.4 Confidence Intervals

We consider two sets of confidence intervals. The first set of confidence intervals, which we refer to
as individual confidence intervals, are the intervals associated with each individual parameter. The
second set of confidence intervals, which we refer to as joint confidence intervals, are the intervals
associated with the joint behavior of the parameters.

277

̂

̂ ̂
̂ ̂

̂ ̂

̂

()

()

Individual Confidence Intervals

Let us introduce an estimate for the covariance of β̂,

Σ ≡ σ̂2(XTX)−1 .

For our case with two parameters, the covariance matrix is 2 × 2. From our estimate of the
covariance, we can construct the confidence interval for β0 as

I0 ≡ β̂0 − tγ,m−2 Σ11, β̂0 + tγ,m−2 Σ11 ,

and the confidence interval for β1 as
I1 ≡ β̂1 − tγ,m−2 Σ22, β̂1 + tγ,m−2 Σ22 .

The coefficient tγ,m−2 depends on the confidence level, γ, and the degrees of freedom, m − 2.
Note that the Half Length of the confidence intervals for β0 and β1 are equal to tγ,m−2 Σ11 and
tγ,m−2 Σ22 , respectively.

The confidence interval I0 is an interval such that the probability of the parameter βtrue taking0
on a value within the interval is equal to the confidence level γ, i.e.

P (βtrue ∈ I0) = γ . 0

Separately, the confidence interval I1 satisfies

P (βtrue ∈ I1) = γ . 1

The parameter tγ,q is the value that satisfies tγ,q

fT,q(s) ds = γ ,
−tγ,q

where fT,q is the probability density function for the Student’s t-distribution with q degrees of
freedom. We recall the frequentistic interpretation of confidence intervals from our earlier estmation
discussion of Unit II.

Note that we can relate tγ,q to the cumulative distribution function of the t-distribution, FT,q,
as follows. First, we note that fT,q is symmetric about zero. Thus, we have tγ,q γ

fT,q(s) ds =
20

and x x1
FT,q(x) ≡ fT,q(s) ds = + fT,q(s) ds .

2−∞ 0

Evaluating the cumulative distribution function at tγ,q and substituting the desired integral rela
tionship, tγ,q 1 1 γ

FT,q(tγ,q) = + fT,q(tγ,q) ds = + .
2 2 20

In particular, given an inverse cumulative distribution function for the Student’s t-distribution, we
can readily compute tγ,q as

1 γ
tγ,q = F −1 + .T,q 2 2

For convenience, we have tabulated the coefficients for 95% confidence level for select values of
degrees of freedom in Table 19.1(a).

278

̂ ̂
̂ ̂

̂
̂

(a) t-distribution (b) F -distribution

q tγ,q|γ=0.95
q k = 1 2 3

sγ,k,q|γ=0.95
4 5 10 15 20

5 2.571 5 2.571 3.402 4.028 4.557 5.025 6.881 8.324 9.548
10 2.228 10 2.228 2.865 3.335 3.730 4.078 5.457 6.533 7.449
15 2.131 15 2.131 2.714 3.140 3.496 3.809 5.044 6.004 6.823
20 2.086 20 2.086 2.643 3.049 3.386 3.682 4.845 5.749 6.518
25 2.060 25 2.060 2.602 2.996 3.322 3.608 4.729 5.598 6.336
30 2.042 30 2.042 2.575 2.961 3.280 3.559 4.653 5.497 6.216
40 2.021 40 2.021 2.542 2.918 3.229 3.500 4.558 5.373 6.064
50 2.009 50 2.009 2.523 2.893 3.198 3.464 4.501 5.298 5.973
60 2.000 60 2.000 2.510 2.876 3.178 3.441 4.464 5.248 5.913
∞ 1.960 ∞ 1.960 2.448 2.796 3.080 3.327 4.279 5.000 5.605

Table 19.1: The coefficient for computing the 95% confidence interval from Student’s t-distribution
and F -distribution.

Joint Confidence Intervals

Sometimes we are more interested in constructing joint confidence intervals — confidence intervals
within which the true values of all the parameters lie in a fraction γ of all realizations. These
confidence intervals are constructed in essentially the same manner as the individual confidence
intervals and take on a similar form. Joint confidence intervals for β0 and β1 are of the form

joint ˆ ˆI ≡ β0 − sγ,2,m−2 Σ11 , β0 + sγ,2,m−2 Σ110

and

joint I1 ≡ β̂1 − sγ,2,m−2 Σ22 , β̂1 + sγ,2,m−2 Σ22 .

Note that the parameter tγ,m−2 has been replaced by a parameter sγ,2,m−2. More generally, the
parameter takes the form sγ,n,m−n, where γ is the confidence level, n is the number of parameters in
the model (here n = 2), and m is the number of measurements. With the joint confidence interval,
we have

βtrue joint and βtrue joint P ∈ I ∈ I ≥ γ . 0 0 1 1

Note the inequality — ≥ γ — is because our intervals are a “bounding box” for the actual sharp
confidence ellipse.

The parameter sγ,k,q is related to γ-quantile for the F -distribution, gγ,k,q, by g
sγ,k,q = kgγ,k,q .

Note gγ,k,q satisfies
gγ,k,q

fF,k,q(s) ds = γ ,
0

where fF,k,q is the probability density function of the F -distribution; we may also express gγ,k,q in
terms of the cumulative distribution function of the F -distribution as

gγ,k,q

FF,k,q(gγ,k,q) = fF,k,q(s) ds = γ .
0

279

√ √
√ √

∫

∫

̂ ̂
̂ ̂

[]
[]

In particular, we can explicitly write sγ,k,q using the inverse cumulative distribution for the F
distribution, i.e.

sγ,k,q = = kF −1 (γ) .kgγ,k,q F,k,q

For convenience, we have tabulated the values of sγ,k,q for several different combinations of k and
q in Table 19.1(b).

We note that

sγ,k,q = tγ,q, k = 1 ,

as expected, because the joint distribution is same as the individual distribution for the case with
one parameter. Furthermore,

sγ,k,q > tγ,q, k > 1 ,

indicating that the joint confidence intervals are larger than the individual confidence intervals. In
other words, the individual confidence intervals are too small to yield jointly the desired γ.

We can understand these confidence intervals with some simple examples.

Example 19.1.2 least-squares estimate for a constant model
Let us consider a simple response model of the form

g

Ymodel(x; β) = β0 ,

where β0 is the single parameter to be determined. The overdetermined system is given by ⎞⎛⎞⎛
Y1 1 ⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
=

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠
β0 = Xβ0 ,

Y2
. . .

1
. . .

Ym 1

and we recognize X = 1 1 · · · 1
T
. Note that we have

XTX = m .

m

For this simple system, we can develop an explicit expression for the parameter β0 by solving the
normal equation, i.e.

mmm
XTXβ0 = XTY ⇒ mβ0 = Yi ⇒ β0

1
= Yi .

m
i=1 i=1

Our parameter estimator β0 is (not surprisingly) identical to the sample mean of Chapter 11 since
our model here Y = N (β0, σ2) is identical to the model of Chapter 11.

The covariance matrix (which is a scalar for this case),

Σ = σ̂2(XTX)−1 = σ̂2/m .

Thus, the confidence interval, I0, has the Half Length

Half Length(I0) = tγ,m−1

g √
σ/ m . Σ = tγ,m−1 ̂

280

√

̂

()

0 0.5 1 1.5 2 2.5 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y
measured

Y
model

y
clean

0 0.5 1 1.5 2 2.5 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y
measured

Y
model

y
clean

(a) m = 14 (b) m = 140

Figure 19.2: Least square fitting of a constant function using a constant model.

Our confidence in the estimator β̂0 converges as 1/
√
m = m−1/2 . Again, the convergence rate is

identical to that in Chapter 11.
As an example, consider a random function of the form

Y ∼
1
+ N (0, σ2) ,

2

with the variance σ2 = 0.01, and a constant (polynomial) response model, i.e.

Ymodel(x; β) = β0 .

Note that the true parameter is given by βtrue = 1/2. Our objective is to compute the least-squares 0
estimate of βtrue , β̂0, and the associated confidence interval estimate, I0. We take measurements 0
at seven points, x = 0, 0.5, 1.0, . . . , 3.0; at each point we take nsample measurements for the total of
m = 7 · nsample measurements. Several measurements (or replication) at the same x can be advan
tageous, as we will see shortly; however it is also possible in particular thanks to our homoscedastic
assumption to take only a single measurement at each value of x.

The results of the least squares fitting for m = 14 and m = 140 are shown in Figure 19.2.
Here yclean corresponds to the noise-free data, yclean = 1/2. The convergence of the 95% confidence
interval with number of samples is depicted in Figure 19.3(a). We emphasize that for the purpose
of these figures and later similar figures we plot the confidence intervals shifted by βtrue . We would 0
not know βtrue in practice, however these figures are intended to demonstrate the performance 0
of the confidence intervals in a case in which the true values are indeed known. Each of the
realizations of the confidence intervals includes the true parameter value. In fact, for the m = 140
case, Figure 19.3(b) shows that 96 out of 100 realizations of the confidence interval include the true
parameter value, which is consistent with the 95% confidence level for the interval. (Of course in
practice we would compute only a single confidence interval.)

·

281

0
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

index

I i −
 β

itr
u
e

m=14

m=140

m=1400

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
a
c
ti
o
n
 i
n

index

95% confidence

(a) 95% shifted confidence intervals (b) 95% ci in/out (100 realizations, m = 140)

Figure 19.3: (a) The variation in the 95% confidence interval with the sampling size m for the
constant model fitting. (b) The frequency of the confidence interval I0 including the true parameter
βtrue
0 .

Example 19.1.3 constant regression model and its relation to deterministic analysis
Earlier, we studied how a data perturbation g − g0 affects the least squares solution z ∗ − z0. In the
analysis we assumed that there is a unique solution z0 to the clean problem, Bz0 = g0, and then

∗compared the solution to the least squares solution z to the perturbed problem, Bz∗ = g. As in
the previous analysis, we use subscript 0 to represent superscript “true” to declutter the notation.

Now let us consider a statistical context, where the perturbation in the right-hand side is induced
by the zero-mean normal distribution with variance σ2 . In this case,

mm1
(g0,i − gi)

m
i=1

is the sample mean of the normal distribution, which we expect to incur fluctuations on the order √
of σ/ m. In other words, the deviation in the solution is

mm
∗ −1 z0 − z = (BTB)−1BT(g0 − g) = m (g0,i − gi) = O √ σ .

m
i=1

Note that this convergence is faster than that obtained directly from the earlier perturbation
bounds,

1 1 √
|z0 − z ∗ | ≤ √ Ig0 − gI = √ mσ = σ ,

m m

which suggests that the error would not converge. The difference suggests that the perturbation
resulting from the normal noise is different from any arbitrary perturbation. In particular, recall
that the deterministic bound based on the Cauchy-Schwarz inequality is pessimistic when the
perturbation is not well aligned with col(B), which is a constant. In the statistical context, the
noise g0 − g is relatively orthogonal to the column space col(B), resulting in a faster convergence
than for an arbitrary perturbation.

282

()

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

Y
measured

Y
model

y
clean

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

Y
measured

Y
model

y
clean

(a) m = 14 (b) m = 140

Figure 19.4: Least square fitting of a linear function using a linear model.

·

Example 19.1.4 least-squares estimate for a linear model
As the second example, consider a random function of the form

Y (x) ∼ −
1
+

2
x + N (0, σ2) ,

2 3

with the variance σ2 = 0.01. The objective is to model the function using a linear model

Ymodel(x; β) = β0 + β1x ,

where the parameters (β0, β1) are found through least squares fitting. Note that the true parameters
are given by βtrue = −1/2 and βtrue = 2/3. As in the constant model case, we take measurements 0 1
at seven points, x = 0, 0.5, 1.0, . . . , 3.0; at each point we take nsample measurements for the total
of m = 7 · nsample measurements. Here, it is important that we take measurements at at least two
different x locations; otherwise, the matrix B will be singular. This makes sense because if we
choose only a single x location we are effectively trying to fit a line through a single point, which
is an ill-posed problem.

The results of the least squares fitting for m = 14 and m = 140 are shown in Figure 19.4. We
see that the fit gets tighter as the number of samples, m, increases.

We can also quantify the quality of the parameter estimation in terms of the confidence intervals.
The convergence of the individual 95% confidence interval with number of samples is depicted in
Figure 19.5(a). Recall that the individual confidence intervals, Ii, i = 0, 1, are constructed to satisfy

P (βtrue P (βtrue∈ I0) = γ and ∈ I1) = γ0 1

with the confidence level γ (95% for this case) using the Student’s t-distribution. Clearly each of
the individual confidence intervals gets tighter as we take more measurements and our confidence
in our parameter estimate improves. Note that the realization of confidence intervals include the
true parameter value for each of the sample sizes considered.

283

0 1
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

index

I i −
 β

itr
u
e

m=14

m=140

m=1400

0 1 all
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
a
c
ti
o
n
 i
n

index

95% confidence

(a) 95% shifted confidence intervals (b) 95% ci in/out (1000 realizations, m = 140)

Figure 19.5: a) The variation in the 95% confidence interval with the sampling size m for the linear
model fitting. b) The frequency of the individual confidence intervals I0 and I1 including the true

and βtrue joint joint , βtrueparameters βtrue (0 and 1, respectively), and I × I jointly including (βtrue)0 1 0 1 0 1
(all).

We can verify the validity of the individual confidence intervals by measuring the frequency that
each of the true parameters lies in the corresponding interval for a large number of realizations.
The result for 1000 realizations is shown in Figure 19.5(b). The column indexed “0” corresponds to
the frequency of βtrue ∈ I0, and the column indexed “1” corresponds to the frequency of βtrue ∈ I1.0 1
As designed, each of the individual confidence intervals includes the true parameter γ = 95% of
the times.

We can also check the validity of the joint confidence interval by measuring the frequency that
joint joint the parameters (β1, β2) jointly takes on values within I0 ×I1 . Recall that the our joint intervals

are designed to satisfy

P(β
true joint and βtrue joint ∈ I ∈ I)≥ γ0 0 1 1

and it uses the F -distribution. The column indexed “all” in Figure 19.5(b). corresponds to the
, βtrue joint joint frequency that (βtrue) ∈ I × I . Note that the joint success rate is a slightly higher 0 1 0 1

(≈ 97%) than γ since the confidence intervals we provide are a simple but conservative bound
for the actual elliptical confidence region. On the other hand, if we mistakenly use the individual
confidence intervals instead of the joint confidence interval, the individual confidence intervals are
too small and jointly include the true parameters only ≈ 92% of the time. Thus, we emphasize that
it is important to construct confidence intervals that are appropriate for the question of interest.

·

19.1.5 Hypothesis Testing

We can also, in place of our CI’s (or in fact, based on our CI’s), consider a hypotheses on the
parameters — and then test these hypotheses. For example, in this last example, we might wish

284

to test the hypothesis (known as the null hypothesis) that β0 = 0. We consider the case in which
m = 1400. Clearly, our CI does not include β0 = 0. Thus most likely β = 0, and we reject the
hypothesis. In general, we reject the hypothesis when the CI does not include zero.

We can easily analyze the Type I error, which is defined as the probability that we reject the
hypothesis when the hypothesis is in fact true. We assume the hypothesis is true. Then, the
probability that the CI does not include zero — and hence that we reject the hypothesis — is 0.05,
since we know that 95% of the time our CI will include zero — the true value under our hypothesis.
(This can be rephrased in terms of a test statistic and a critical region for rejection.) We denote
by 0.05 the “size” of the test, which is also known as the “p value” of the test — the probability
that we incorrectly reject the hypothesis due to an unlucky (rare) “fluctuation.” We say that a
test with a small size or small p-value is statistically significant in that our conclusion most likely
is not influenced by random effects (e.g., due to finite sample size).

We can also introduce the notion of a Type II error, which is defined as the probability that
we accept the hypothesis when the hypothesis is in fact false. And the “power” of the test is
the probability that we reject the hypothesis when the hypothesis in fact false: the power is
1 − the Type II error. Typically it is more difficult to calculate Type II errors (and power) than
Type I errors.

19.1.6 Inspection of Assumptions

In estimating the parameters for the response model and constructing the corresponding confidence
intervals, we relied on the noise assumptions (N1), (N2), and (N3). In this section, we consider
examples that illustrate how the assumptions may be broken. Then, we propose methods for
verifying the plausibility of the assumptions. Note we give here some rather simple tests without
any underlying statistical structure; in fact, it is possible to be more rigorous about when to accept
or reject our noise and bias hypotheses by introducing appropriate statistics such that “small” and
“large” can be quantified. (It is also possible to directly pursue our parameter estimation under
more general noise assumptions.)

Checking for Plausibility of the Noise Assumptions

Let us consider a system governed by a random affine function, but assume that the noise E(x) is
perfectly correlated in x. That is,

Y (xi) = βtrue + βtrue xi + E(xi) ,0 1

where

E(x1) = E(x2) = · · · = E(xm) ∼ N (0, σ2) .

Even though the assumptions (N1) and (N2) are satisfied, the assumption on independence, (N3),
is violated in this case. Because the systematic error shifts the output by a constant, the coefficient
of the least-squares solution corresponding to the constant function β0 would be shifted by the
error. Here, the (perfectly correlated) noise E is incorrectly interpreted as signal.

Let us now present a test to verify the plausibility of the assumptions, which would detect the
presence of the above scenario (amongst others). The verification can be accomplished by sampling
the system in a controlled manner. Say we gather N samples evaluated at xL,

L1, L2, . . . , LN where Li = Y (xL), i = 1, . . . , N .

285

6

Similarly, we gather another set of N samples evaluated at xR = xL,

R1, R2, . . . , RN where Ri = Y (xR), i = 1, . . . , N .

Using the samples, we first compute the estimate for the mean and variance for L,

NmN

µ̂L = Li and
m1 1

σ̂2 = L (Li − µ̂L)
2 ,

N N − 1
i=1 i=1

and those for R,

NmN

µ̂R = Ri and
m1 1

σ̂2 = R (Ri − µ̂R)
2 .

N N − 1
i=1 i=1

To check for the normality assumption (N1), we can plot the histogram for L and R (using an
appropriate number of bins) and for N (µ̂L, σ̂

2) and N (µ̂R, σ̂
2). If the error is normally distributed, L R

these histograms should be similar, and resemble the normal distribution.
To check for the homoscedasticity assumption (N2), we can compare the variance estimate for

samples L and R, i.e., is σ̂2 ≈ σ̂2 ? If σ̂2 σ̂2 , then assumption (N2) is not likely plausible because L R L R

the noise at xL and xR have different distributions.
Finally, to check for the uncorrelatedness assumption (N3), we can check the correlation coeffi

cient ρL,R between L and R. The correlation coefficient is estimated as

1 1 mN

ρ̂L,R = (Li − µ̂L)(Ri − µ̂R) .
σ̂Lσ̂R N − 1

i=1

If the correlation coefficient is not close to 0, then the assumption (N3) is not likely plausible. In
the example considered with the correlated noise, our system would fail this last test.

Checking for Presence of Bias

Let us again consider a system governed by an affine function. This time, we assume that the
system is noise free, i.e.

Y (x) = βtrue + βtrue x . 0 1

We will model the system using a constant function,

Ymodel = β0 .

Because our constant model would match the mean of the underlying distribution, we would inter
pret Y − mean(Y) as the error. In this case, the signal is interpreted as a noise.

We can check for the presence of bias by checking if

|µ̂L − Ymodel(xL)| ∼ O(σ̂) .

If the relationship does not hold, then it indicates a lack of fit, i.e., the presence of bias. Note
that replication — as well as data exploration more generally — is crucial in understanding the
assumptions.

286

6=

6≈

̂

19.2 General Case

We consider a more general case of regression, in which we do not restrict ourselves to a linear
response model. However, we still assume that the noise assumptions (N1), (N2), and (N3) hold.

19.2.1 Response Model

Consider a general relationship between the measurement Y , response model Ymodel, and the noise
E of the form

Y (x) = Ymodel(x; β) + E ,

where the independent variable x is vector valued with p components, i.e.
T

x = x(1), x(2), · · · , x(p) ∈ D ⊂ Rp .

The response model is of the form
n−1m

Ymodel(x; β) = β0 + βj hj (x) ,
j=1

where hj , j = 0, . . . , n − 1, are the basis functions and βj , j = 0, . . . , n − 1, are the regression
coefficients. Note that we have chosen h0(x) = 1. Similar to the affine case, we assume that Ymodel
is sufficiently rich (with respect to the underlying random function Y), such that there exists a pa
rameter βtrue with which Ymodel(·; βtrue) perfectly describes the behavior of the noise-free underlying
function, i.e., unbiased. (Equivalently, there exists a βtrue such that Y (x) ∼ N (Ymodel(x; βtrue), σ2).

It is important to note that this is still a linear regression. It is linear in the sense that the
regression coefficients βj , j = 0, . . . , n − 1, appear linearly in Ymodel. The basis functions hj ,
j = 0, . . . , n − 1, do not need to be linear in x; for example, h1(x(1), x(2), x(3)) = x(1) exp(x(2)x(3))
is perfectly acceptable for a basis function. The simple case considered in the previous section
corresponds to p = 1, n = 2, with h0(x) = 1 and h1(x) = x.

There are two main approaches to choose the basis functions.

(i) Functions derived from anticipated behavior based on physical models. For example, to
deduce the friction coefficient, we can relate the static friction and the normal force following
the Amontons’ and Coulomb’s laws of friction,

Ff, static = µs Fnormal, applied ,

where Ff, static is the friction force, µs is the friction coefficient, and Fnormal, applied is the normal
force. Noting that Ff, static is a linear function of Fnormal, applied, we can choose a linear basis
function h1(x) = x.

(ii) Functions derived from general mathematical approximations, which provide good accuracy
in some neighborhood D. Low-order polynomials are typically used to construct the model,
for example

2 2Ymodel(x(1), x(2); β) = β0 + β1x(1) + β2x(2) + β3x(1)x(2) + β4x(1) + β5x .(2)

Although we can choose n large and let least-squares find the good β — the good model within
our general expansion — this is typically not a good idea: to avoid overfitting , we must ensure the
number of experiments is much greater than the order of the model, i.e., m » n. We return to
overfitting later in the chapter.

287

19.2.2 Estimation

We take m measurements to collect m independent variable-measurement pairs

(xi, Yi), i = 1, . . . ,m ,

where xi = (x(1), x(2), . . . , x(p))i. We claim

Yi = Ymodel(xi; β) + Ei
n−1

= β0 + βj hj (xi) + Ei, i = 1, . . . ,m ,
j=1

which yields

m

⎞⎛⎞⎛⎞⎛⎞⎛
Y1 ⎟⎟⎟⎟⎠

=
⎜⎜⎜⎜⎝

1 h1(x1) h2(x1) . . . hn−1(x1)
1 h1(x2) h2(x2) . . . hn−1(x2)
.

⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎠

β0
β1
. . .

⎟⎟⎟⎟⎠
+

⎜⎜⎜⎜⎝

E(x1)
E(x2)
. . .

⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎝

Y2
. . .

.

Ym 1 h1(xm) h2(xm) . . . hn−1(xm) βn−1 E(xm) "'"'"'"' v
Y

v
X

v
β

v
E

The least-squares estimator β̂ is given by

(XTX) ̂β = XTY ,

and the goodness of fit is measured by σ̂,

σ̂ =
1

m − n
IY − Y I2

1/2
,

where ⎞⎛⎞⎛ n−1β̂0 + β̂j hj (x1)Ymodel(x1)

Ymodel(x2)
. . .

j=1

n−1
⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎠
=

⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎠

β̂0 + β̂j hj (x2) = X β̂ . j=1

. . .
Y =

 n−1β̂0 + β̂j hj (xm) Ymodel(xm) j=1

As before, the mean of the mean of the model is equal to the mean of the measurements, i.e.

Y = Y ,

where mmm m

Y = Yi and Y = Yi .
m m

i=1 i=1

The preservation of the mean is ensured by the presence of the constant term β0 · 1 in our model.

1 1

288

(̂)

̂

̂

̂

19.2.3 Confidence Intervals

The construction of the confidence intervals follows the procedure developed in the previous section.
Let us define the covariance matrix

Σ = σ̂2(XTX)−1 .

Then, the individual confidence intervals are given by

Ij = β̂j − tγ,m−n Σj+1,j+1, β̂j + tγ,m−n Σj+1,j+1 , j = 0, . . . , n − 1 ,

where tγ,m−n comes from the Student’s t-distribution as before, i.e.

1 γ
= F −1tγ,m−n T,m−n + ,

2 2

where F −1 is the inverse cumulative distribution function of the t-distribution. The shifting of the T,q
covariance matrix indices is due to the index for the parameters starting from 0 and the index for
the matrix starting from 1. Each of the individual confidence intervals satisfies

P (βtrue ∈ Ij) = γ, j = 0, . . . , n − 1 ,j

where γ is the confidence level.
We can also develop joint confidence intervals,

joint I = β̂j − sγ,n,m−n Σj+1,j+1, β̂j + sγ,n,m−n Σj+1,j+1 , j = 0, . . . , n − 1 ,j

where the parameter sγ,n,m−n is calculated from the inverse cumulative distribution function for
the F -distribution according to

= nF −1 (γ) .

The joint confidence intervals satisfy

sγ,n,m−n F,n,m−n

βtrue joint , βtrue joint joint and βtrue joint P ∈ I ∈ I , . . . , βtrue ≥ γ . 0 0 1 1 n−2 ∈ In−2 , n−1 ∈ In−1

Example 19.2.1 least-squares estimate for a quadratic function
Consider a random function of the form

1 2 1 2Y (x) ∼ − + x − x + N (0, σ2) ,
2 3 8

with the variance σ2 = 0.01. We would like to model the behavior of the function. Suppose we
know (though a physical law or experience) that the output of the underlying process depends
quadratically on input x. Thus, we choose the basis functions

h1(x) = 1, h2(x) = x, and h3(x) = x 2 .

The resulting model is of the form

Ymodel(x; β) = β0 + β1x + β2x 2 ,

289

√ √

√ √

√

̂ ̂

()

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Y
measured

Y
model

y
clean

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Y
measured

Y
model

y
clean

(a) m = 14 (b) m = 140

Figure 19.6: Least squares fitting of a quadratic function using a quadratic model.

where (β0, β1, β2) are the parameters to be determined through least squares fitting. Note that the
= −1/2, βtruetrue parameters are given by βtrue = 2/3, and βtrue = −1/8.0 1 2

The result of the calculation is shown in Figure 19.6. Our model qualitatively matches well with
the underlying “true” model. Figure 19.7(a) shows that the 95% individual confidence interval for
each of the parameters converges as the number of samples increase.

Figure 19.7(b) verifies that the individual confidence intervals include the true parameter ap
proximately 95% of the times (shown in the columns indexed 0, 1, and 2). Our joint confidence
interval also jointly include the true parameter about 98% of the times, which is greater than the
prescribed confidence level of 95%. (Note that individual confidence intervals jointly include the
true parameters only about 91% of the times.) These results confirm that both the individual and
joint confidence intervals are reliable indicators of the quality of the respective estimates.

·

19.2.4 Overfitting (and Underfitting)

We have discussed the importance of choosing a model with a sufficiently large n — such that
the true underlying distribution is representable and there would be no bias — but also hinted
that n much larger than necessary can result in an overfitting of the data. Overfitting significantly
degrades the quality of our parameter estimate and predictive model, especially when the data is
noisy or the number of data points is small. Let us illustrate the effect of overfitting using a few
examples.

Example 19.2.2 overfitting of a linear function
Let us consider a noisy linear function

Y (x) ∼
1
+ 2x + N (0, σ2) .

2
However, unlike in the previous examples, we assume that we do not know the form of the input-
output dependency. In this and the next two examples, we will consider a general n − 1 degree
polynomial fit of the form

1 n−1Ymodel,n(x; β) = β0 + β1x + · · · + βn−1x .

290

0 1 2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

index

I i −
 β

itr
u
e

n=3, m=14

n=3, m=140

n=3, m=1400

0 1 2 all
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
a
c
ti
o
n
 i
n

index

95% confidence

(a) 95% shifted confidence intervals (b) 95% ci in/out (1000 realizations, m = 140)

Figure 19.7: (a) The variation in the 95% confidence interval with the sampling size m for the linear
model fitting. (b) The frequency of the individual confidence intervals I0, I1, and I2 including the

, βtrue joint joint joint true parameters βtrue , and βtrue (0, 1, and 2, respectively), and I × I × I jointly 0 1 2 0 1 2
, βtrue, βtrueincluding (βtrue) (all). 0 1 2

Note that the true parameters for the noisy function are

1
βtrue βtrue βtrue · = βtrue
0 = , 1 = 2, and 2 = · · = 0 ,n2

for any n ≥ 2.
The results of fitting the noisy linear function using m = 7 measurements for the n = 2, n = 3,

and n = 5 response models are shown in Figure 19.8(a), (b), and (c), respectively. The n = 2 is
the nominal case, which matches the true underlying functional dependency, and the n = 3 and
n = 5 cases correspond to overfitting cases. For each fit, we also state the least-squares estimate
of the parameters. Qualitatively, we see that the prediction error, yclean(x) − Ymodel(x), is larger
for the quartic model (n = 5) than the affine model (n = 2). In particular, because the quartic
model is fitting five parameters using just seven data points, the model is close to interpolating
the noise, resulting in an oscillatory behavior that follows the noise. This oscillation becomes more
pronounced as the noise level, σ, increases.

and βtrueIn terms of estimating the parameters βtrue , the affine model again performs better 0 1
than the overfit cases. In particular, the error in β̂1 is over an order of magnitude larger for the n = 5
model than for the n = 2 model. Fortunately, this inaccuracy in the parameter estimate is reflected
in large confidence intervals, as shown in Figure 19.9. The confidence intervals are valid because
our models with n ≥ 2 are capable of representing the underlying functional dependency with
truen = 2, and the unbiasedness assumption used to construct the confidence intervals still holds.

Thus, while the estimate may be poor, we are informed that we should not have much confidence in
our estimate of the parameters. The large confidence intervals result from the fact that overfitting
effectively leaves no degrees of freedom (or information) to estimate the noise because relatively
too many degrees of freedom are used to determine the parameters. Indeed, when m = n, the
confidence intervals are infinite.

Because the model is unbiased, more data ultimately resolves the poor fit, as shown in Fig
−1/2ure 19.8(d). However, recalling that the confidence intervals converge only as m , a large

291

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

3

4

5

6

7

8

σ = 0.5, m = 7, n = 2

β
0
 = 0.44, β

1
 = 1.88

Y
measured

Y
model

y
clean

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

3

4

5

6

7

8

σ = 0.5, m = 7, n = 3

β
0
 = 0.54, β

1
 = 1.65, β

2
 = 0.08

Y
measured

Y
model

y
clean

(a) m = 7, n = 2 (b) m = 7, n = 3

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

3

4

5

6

7

8

σ = 0.5, m = 7, n = 5

β
0
 = 0.22, β

1
 = 5.82, β

2
 = −6.32, β

3
 = 3.15, β

4
 = −0.49

Y
measured

Y
model

y
clean

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

3

4

5

6

7

8

σ = 0.5, m = 70, n = 5

β
0
 = 0.27, β

1
 = 2.24, β

2
 = 0.44, β

3
 = −0.47, β

4
 = 0.10

Y
measured

Y
model

y
clean

(c) m = 7, n = 5 (d) m = 70, n = 5

Figure 19.8: Least squares fitting of a linear function using polynomial models of various orders.

0 1 2 3 4
−20

−15

−10

−5

0

5

10

15

index

I i −
 β

itr
u

e

n=2, m=7

n=3, m=7

n=5, m=7

Figure 19.9: The 95% shifted confidence intervals for fitting a linear function using polynomial
models of various orders.

292

number of samples are required to tighten the confidence intervals — and improve our parameter
estimates — for the overfitting cases. Thus, deducing an appropriate response model based on, for
example, physical principles can significantly improve the quality of the parameter estimates and
the performance of the predictive model.

·

Begin Advanced Material

Example 19.2.3 overfitting of a quadratic function
In this example, we study the effect of overfitting in more detail. We consider data governed by a
random quadratic function of the form

1 2 1 2Y (x) ∼ − + x − cx + N (0, σ2) ,
2 3 8

with c = 1. We again consider for our model the polynomial form Ymodel,n(x; β).
Figure 19.10(a) shows a typical result of fitting the data using m = 14 sampling points and

n = 4. Our cubic model includes the underlying quadratic distribution. Thus there is no bias and
our noise assumptions are satisfied. However, compared to the quadratic model (n = 3), the cubic
model is affected by the noise in the measurement and produces spurious variations. This spurious
variation tend to disappear with the number of sampling points, and Figure 19.10(b) with m = 140
sampling points exhibits a more stable fit.

Figure 19.10(c) shows a realization of confidence intervals for the cubic model (n = 4) using
m = 14 and m = 140 sampling points. A realization of confidence intervals for the quadratic model
(n = 3) is also shown for comparison. Using the same set of data, the confidence intervals for the
cubic model are larger than those of the quadratic model. However, the confidence intervals of the
cubic model include the true parameter value for most cases. Figure 19.10(d) confirms that the
95% of the realization of the confidence intervals include the true parameter. Thus, the confidence
intervals are reliable indicators of the quality of the parameter estimates, and in general the intervals
get tighter with m, as expected. Modest overfitting, n = 4 vs. n = 3, with m sufficiently large,
poses little threat.

Let us check how overfitting affects the quality of the fit using two different measures. The first
is a measure of how well we can predict, or reproduce, the clean underlying function; the second is
a measure for how well we approximate the underlying parameters.

First, we quantify the quality of prediction using the maximum difference in the model and the
clean underlying data,

emax ≡ max |Ymodel,n(x; β̂) − Yclean(x)| .
x∈[−1/4,3+1/4]

Figure 19.11(a) shows the variation in the maximum prediction error with n for a few different
values of m. We see that we get the closest fit (in the sense of the maximum error), when n = 3
— when there are no “extra” terms in our model. When only m = 7 data points are used, the
quality of the regression degrades significantly as we overfit the data (n > 3). As the dimension of
the model n approaches the number of measurements, m, we are effectively interpolating the noise.
The interpolation induces a large error in the parameter estimates, and we can not estimate the
noise since we are fitting the noise. We observe in general that the quality of the estimate improves
as the number of samples is increased.

Second, we quantify the quality of the parameter estimates by measuring the error in the
quadratic coefficient, i.e., |β2 − β̂2|. Figure 19.11(b) shows that, not surprisingly, the error in the

293

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Y
measured

Y
model

y
clean

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Y
measured

Y
model

y
clean

(a) m = 14 (b) m = 140

0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

index

I i −
 β

itr
u
e

n=4, m=14

n=4, m=140

n=3, m=14

n=3, m=140

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
a
c
ti
o
n
 i
n

index

95% confidence

(c) 95% shifted confidence intervals (d) 95% ci in/out (100 realizations, m = 140)

Figure 19.10: Least squares fitting of a quadratic function (c = 1) using a cubic model.

294

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

m
a

x
im

u
m

 e
rr

o
r

m=7

m=14

m=140

1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

10
1

n

β
2
 e

rr
o

r

m=7

m=14

m=140

(a) maximum prediction error (b) error in parameter β2

1 2 3 4 5 6
10−3

10−2

10−1

100

n

||Y
−

X
β

||/
m

1/
2

m=7
m=14
m=140

^

1 2 3 4 5 6
10

0

10
1

10
2

10
3

10
4

10
5

n

ν
m

a
x
/ν

m
in

m=7

m=14

m=140

(c) (normalized) residual (d) condition number

Figure 19.11: Variation in the quality of regression with overfitting.

295

parameter increases under overfitting. In particular, for the small sample size of m = 7, the error
in the estimate for β3 increases from O(10−2) for n = 3 to O(1) for n ≥ 5. Since β3 is an O(1)
quantity, this renders the parameter estimates for n ≥ 5 essentially meaningless.

It is important to recognize that the degradation in the quality of estimate — either in terms
of predictability or parameter error — is not due to the poor fit at the data points. In particular,
the (normalized) residual,

m

1
1/2 IY − Xβ̂I ,

which measures the fit at the data points, decreases as n increases, as shown in Figure 19.11(c). The
decrease in the residual is not surprising. We have new coefficients which were previously implicitly
zero and hence the least squares must provide a residual which is non-increasing as we increase
n and let these coefficients realize their optimal values (with respect to residual minimization).
However, as we see in Figure 19.11(a) and 19.11(b), better fit at data points does not imply better
representation of the underlying function or parameters.

The worse prediction of the parameter is due to the increase in the conditioning of the problem
(νmax/νmin), as shown in Figure 19.11(d). Recall that the error in the parameter is a function of
both residual (goodness of fit at data points) and conditioning of the problem, i.e.

Iβ̂ − βI νmax IXβ̂ − Y I ≤ .
IβI νmin IY I

As we increase n for a fixed m, we do reduce the residual. However, clearly the error is larger both
in terms of output prediction and parameter estimate. Once again we see that the residual — and
similar commonly used goodness of fit statistics such as R2 — is not the “final answer” in terms of
the success of any particular regression exercise.

Fortunately, similar to the previous example, this poor estimate of the parameters is reflected
in large confidence intervals, as shown in Figure 19.12. Thus, while the estimates may be poor, we
are informed that we should not have much confidence in our estimate of the parameters and that
we need more data points to improve the fit.

Finally, we note that the conditioning of the problem reflects where we choose to make our
measurements, our choice of response model, and how we choose to represent this response model.
For example, as regards the latter, a Legendre (polynomial) expansion of order n would certainly
decrease νmax/νmin, albeit at some complication in how we extract various parameters of interest.

·

Example 19.2.4 underfitting of a quadratic function
We consider data governed by a noisy quadratic function (ntrue ≡ 3) of the form

1 2 1 2Y (x) ∼ − + x − cx + N (0, σ2) .
2 3 8

We again assume that the input-output dependency is unknown. The focus of this example is
underfitting; i.e., the case in which the degree of freedom of the model n is less than that of data
truen . In particular, we will consider an affine model (n = 2),

Ymodel,2(x; β) = β0 + β1x ,

which is clearly biased (unless c = 0).
For the first case, we consider the true underlying distribution with c = 1, which results in a

strong quadratic dependency of Y on x. The result of fitting the function is shown in Figure 19.13.

296

0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

index

I i −
 β

itr
u

e

n=3, m=14

n=4, m=14

n=5, m=14

n=6, m=14

0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

index

I i −
 β

itr
u
e

n=3, m=140

n=4, m=140

n=5, m=140

n=6, m=140

(a) m = 14 (b) m = 140

Figure 19.12: The variation in the confidence intervals for fitting a quadratic function using
quadratic (n = 3), cubic (n = 4), quartic (n = 5), and quintic (n = 6) polynomials. Note the
difference in the scales for the m = 14 and m = 140 cases.

Note that the affine model is incapable of representing the quadratic dependency even in the absence
of noise. Thus, comparing Figure 19.13(a) and 19.13(b), the fit does not improve with the number
of sampling points.

Figure 19.13(c) shows typical individual confidence intervals for the affine model (n = 2) using
m = 14 and m = 140 sampling points. Typical confidence intervals for the quadratic model (n = 3)
are also provided for comparison. Let us first focus on analyzing the fit of the affine model (n = 2)
using m = 14 sampling points. We observe that this realization of confidence intervals I0 and I1

and βtruedoes not include the true parameters βtrue , respectively. In fact, Figure 19.13(d) shows 0 1
that only 37 of the 100 realizations of the confidence interval I0 include βtrue and that none of the 0
realizations of I1 include β1true . Thus the frequency that the true value lies in the confidence interval
is significantly lower than 95%. This is due to the presence of the bias error, which violates our
assumptions about the behavior of the noise — the assumptions on which our confidence interval
estimate rely. In fact, as we increase the number of sampling point from m = 14 to m = 140 we
see that the confidence intervals for both β0 and β1 tighten; however, they converge toward wrong
values. Thus, in the presence of bias, the confidence intervals are unreliable, and their convergence
implies little about the quality of the estimates.

Let us now consider the second case with c = 1/10. This case results in a much weaker
quadratic dependency of Y on x. Typical fits obtained using the affine model are shown in Fig
ure 19.14(a) and 19.14(b) for m = 14 and m = 140 sampling points, respectively. Note that the fit
is better than the c = 1 case because the c = 1/10 data can be better represented using the affine
model.

Typical confidence intervals, shown in Figure 19.14(c), confirm that the confidence intervals are
more reliable than in the c = 1 case. Of the 100 realizations for the m = 14 case, 87% and 67%

and βtrueof the confidence intervals include the true values β0true
1 , respectively. The frequencies

are lower than the 95%, i.e., the confidence intervals are not as reliable as their pretension, due
to the presence of bias. However, they are more reliable than the case with a stronger quadratic
dependence, i.e. a stronger bias. Recall that a smaller bias leading to a smaller error is consistent
with the deterministic error bounds we developed in the presence of bias.

Similar to the c = 1 case, the confidence interval tightens with the number of samples m, but

297

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Y
measured

Y
model

y
clean

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Y
measured

Y
model

y
clean

(a) m = 14 (b) m = 140

0 1 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

index

I i −
 β

itr
u
e

n=2, m=14

n=2, m=140

n=3, m=14

n=3, m=140

0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
a
c
ti
o
n
 i
n

index

95% confidence

(c) 95% shifted confidence intervals (d) 95% ci in/out (100 realizations, m = 14)

Figure 19.13: Least squares fitting of a quadratic function (c = 1) using an affine model.

298

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

Y
measured

Y
model

y
clean

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

Y
measured

Y
model

y
clean

(a) m = 14 (b) m = 140

0 1 2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

index

I i −
 β

itr
u
e

n=2, m=14

n=2, m=140

n=3, m=14

n=3, m=140

0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
a
c
ti
o
n
 i
n

index

95% confidence

(c) 95% shifted confidence intervals (d) 95% ci in/out (100 realizations, m = 14)

Figure 19.14: Least squares fitting of a quadratic function (c = 1/10) using an affine model.

299

they converge to a wrong value. Accordingly, the reliability of the confidence intervals decreases
with m.

·

End Advanced Material

300

MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	III Linear Algebra 1: Matrices and Least Squares. Regression.
	Motivation
	Matrices and Vectors: Definitions and Operations
	Basic Vector and Matrix Operations
	Definitions
	Transpose Operation

	Vector Operations
	Inner Product
	Norm (2-Norm)
	Orthogonality
	Orthonormality

	Linear Combinations
	Linear Independence
	Vector Spaces and Bases

	Matrix Operations
	Interpretation of Matrices
	Matrix Operations
	Matrix-Matrix Product

	Interpretations of the Matrix-Vector Product
	Row Interpretation
	Column Interpretation
	Left Vector-Matrix Product

	Interpretations of the Matrix-Matrix Product
	Matrix-Matrix Product as a Series of Matrix-Vector Products
	Matrix-Matrix Product as a Series of Left Vector-Matrix Products

	Operation Count of Matrix-Matrix Product
	The Inverse of a Matrix (Briefly)

	Special Matrices
	Diagonal Matrices
	Symmetric Matrices
	Symmetric Positive Definite Matrices
	Triangular Matrices
	Orthogonal Matrices
	Orthonormal Matrices

	Further Concepts in Linear Algebra
	Column Space and Null Space
	Projectors

	Least Squares
	Data Fitting in Absence of Noise and Bias
	Overdetermined Systems
	Row Interpretation
	Column Interpretation

	Least Squares
	Measures of Closeness
	Least-Squares Formulation (2 minimization)
	Computational Considerations
	QR Factorization and the Gram-Schmidt Procedure

	Interpretation of Least Squares: Projection
	Error Bounds for Least Squares
	Error Bounds with Respect to Perturbation in Data, g (constant model)
	Error Bounds with Respect to Perturbation in Data, g (general)
	Error Bounds with Respect to Reduction in Space, B

	Matlab Linear Algebra (Briefly)
	Matrix Multiplication (and Addition)
	The Matlab Inverse Function: inv
	Solution of Linear Systems: Matlab Backslash
	Solution of (Linear) Least-Squares Problems

	Regression: Statistical Inference
	Simplest Case
	Friction Coefficient Determination Problem Revisited
	Response Model
	Parameter Estimation
	Confidence Intervals
	Individual Confidence Intervals
	Joint Confidence Intervals

	Hypothesis Testing
	Inspection of Assumptions
	Checking for Plausibility of the Noise Assumptions
	Checking for Presence of Bias

	General Case
	Response Model
	Estimation
	Confidence Intervals
	Overfitting (and Underfitting)

