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Chapter 29 

Newton Iteration 

29.1 Introduction 

The demonstration robot arm of Figure 29.1 is represented schematically in Figure 29.2. Note 
that although the robot of Figure 29.1 has three degrees-of-freedom (“shoulder,” “elbow,” and 
“waist”), we will be dealing with only two degrees-of-freedom — “shoulder” and “elbow” — in this 
assignment. 

Figure 29.1: Demonstration robot arm. (Robot  
and photograph courtesy of James Penn.) Figure 29.2: Schematic of robot arm.  

The forward kinematics of the robot arm determine the coordinates of the end effector X = 
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[X1, X2]
T for given joint angles Q = [Q1, Q2]

T as    
X1 L1 cos(Q1) + L2 cos(Q1 + Q2) 

(Q) = , (29.1) 
X2 L1 sin(Q1) + L2 sin(Q1 + Q2)

where L1 and L2 are the lengths of the first and second arm links, respectively. For our robot, 
L1 = 4 inches and L2 = 3.025 inches. 

The inverse kinematics of the robot arm — the joint angles Q needed to realize a particular 
end effector position X — are not so straightforward and, for many more complex robot arms, a 
closed-form solution does not exist. In this assignment, we will solve the inverse kinematic problem 
for a two degree-of-freedom, planar robot arm by solving numerically for Q1 and Q2 from the set 
of nonlinear Equations (29.1) . 

Given a trajectory of data vectors X(i), 1 ≤ i ≤ p — a sequence of p desired end effector 
positions — the corresponding joint angles satisfy 

F(Q(i), X(i))= 0, 1 ≤ i ≤ p , (29.2) 

where     
F1 L1 cos(q1) + L2 cos(q1 + q2) − X1 

F (q, X) = = . 
F2 L1 sin(q1) + L2 sin(q1 + q2) − X2

For the robot “home” position, Xhome ≈ [−0.7154, 6.9635]T, the joint angles are known: Qhome = 
[1.6, 0.17]T (in radians). We shall assume that X(1) = Xhome and hence Q(1) = Qhome in all cases; 
it will remain to find Q(2), . . . , Q(p). 

Based on the design of our robot, we impose the following physical constraints on Q1 and Q2: 

sin(Q1) ≥ 0 ; sin(Q2) ≥ 0 . (29.3) 

Note that a mathematically valid solution of Equation (29.2) might not satisfy the constraints of 
Equation (29.3) and, therefore, will need to be checked for physical consistency. 

Previously we considered solving equations of the form Ax = b for solution X, given appropri
ately sized matrix and vector A and b. In the univariate case with scalar (1 × 1) A and b, we could 
visualize the solution of these linear systems of equations as finding the zero crossing (root) of the 
line f(x) = Ax − b, as shown in Figure 29.3(a). 

Now we will consider the solution of nonlinear systems of equations f(z) = 0 for root Z, where 
terms such as powers of z, transcendental functions of z, discontinuous functions of z, or any other 
such nonlinearities preclude the linear model. In the univariate case, we can visualize the solution 
of the nonlinear system as finding the roots of a nonlinear function, as shown in Figure 29.3(b) 
for a cubic, f(z). Our robot example of Figures 29.1 and 29.2 represent a bivariate example of a 
nonlinear system (in which F plays the role of f , and Q plays the role of Z — the root we wish to 
find). 

In general, a linear system of equations may have no solution, one solution (a unique solution), or 
an infinite family of solutions. In contrast, a nonlinear problem may have no solution, one solution, 
two solutions, three solutions (as in Figure 29.3(b)), any number of solutions, or an infinite family 
of solutions. We will also need to decide which solutions (of a nonlinear problem) are of interest or 
relevant given the context and also stability considerations. 

The nonlinear problem is typically solved as a sequence of linear problems — hence builds 
directly on linear algebra. The sequence of linear problems can be generated in a variety of fashions; 
our focus here is Newton’s method. Many other approaches are also possible — for example, least 
squares/optimization — for solution of nonlinear problems. 

The fundamental approach of Newton’s method is simple: 
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Figure 29.3: Solutions of univariate linear and nonlinear equations. 

•	 Start with an initial guess or approximation for the root of a nonlinear system. 

•	 Linearize the system around that initial approximation and solve the resulting linear system 
to find a better approximation for the root. 

•	 Continue linearizing and solving until satisfied with the accuracy of the approximation. 

This approach is identical for both univariate (one equation in one variable) and multivariate 
(n equations in n variables) systems. We will first consider the univariate case and then extend our 
analysis to the multivariate case. 

29.2 Univariate Newton 

29.2.1 The Method 

Given a univariate function f(z), we wish to find a real zero/root Z of f such that f(Z) = 0. Note 
that z is any real value (for which the function is defined), whereas Z is a particular value of z at 
which f(z = Z) is zero; in other words, Z is a root of f(z). 

We first start with an initial approximation (guess) ẑ0 for the zero Z. We next approximate 
the function f(z) with its first-order Taylor series expansion around ẑ0, which is the line tangent 
to f(z) at z = ẑ0 

f0 z 0)(z − ẑ0) + f(ẑ 0) .	 (29.4)linear(z) ≡ f '(ˆ

We find the zero ẑ1 of the linearized system f0 (z) by linear

f0 z 1) ≡ f '(ẑ 0)(ẑ 1 − ẑ0) + f(ẑ 0) = 0 ,	 (29.5)linear(ˆ

which yields 
1 f(ẑ0) 

ẑ 	 = ẑ0 − . (29.6)
f '(ẑ0) 

We then repeat the procedure with ẑ1 to find ẑ2 and so on, finding successively better approxi
mations to the zero of the original system f(z) from our linear approximations fk (z) until we linear

Nreach ẑ such that |f(ẑN )| is within some desired tolerance of zero. (To be more rigorous, we must 
relate |f(ẑN )| to |Z − ẑN |.) 
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Figure 29.4: Graphical illustration of the Newton root finding method. 

29.2.2 An Example 

The first few steps of the following example have been illustrated in Figure 29.4. 
We wish to use the Newton method to find a solution to the equation 

z 2 + 2z = 3 . (29.7) 

We begin by converting the problem to a root-finding problem 

f(Z) = Z2 + 2Z − 3 = 0 . (29.8) 

We next note that the derivative of f is given by 

f ' (z) = 2z + 2 . (29.9) 

We start with initial guess ẑ0 = 4. We then linearize around ẑ0 to get 

f0 
linear(z) ≡ f ' (ẑ 0)(z − ẑ 0) + f(ẑ 0) = 10(z − 4) + 21 . (29.10) 

We solve the linearized system 

f0 
linear(ẑ 1) ≡ 10(z − 4) + 21 = 0 (29.11) 

to find the next approximation for the root of f(z), 

ẑ 1 = 1.9 . (29.12) 
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We repeat the procedure to find  

f1 ' (ẑ 1)(z − ẑ1) + f(ẑ 1) = 5.8(z − 1.9) + 4.41 (29.13)linear(z) ≡ f 

f1 z 2) = 0 (29.14)linear(ˆ

ẑ2 = 1.1397 ; (29.15) 

f2 ' (ẑ 2)(z − ẑ2) + f(ẑ 2) = 4.2793(z − 1.1397) + 0.5781 (29.16)linear(z) ≡ f 

f2 z 3) = 0 (29.17)linear(ˆ

ẑ3 = 1.0046 . (29.18) 

Note the rapid convergence to the actual root Z = 1. Within three iterations the error has been 
reduced to 0.15% of its original value. 

29.2.3 The Algorithm 

The algorithm for the univariate Newton’s method is a simple while loop. If we wish to store the 
intermediate approximations for the zero, the algorithm is shown in Algorithm 1. If we don’t need 
to save the intermediate approximations, the algorithm is shown in Algorithm 2. 

If, for some reason, we cannot compute the derivative f ' (ẑk) directly, we can substitute the 
finite difference approximation of the derivative (see Chapter 3) for some arbitrary (small) given 
Δz, which, for the backward difference is given by 

f(ẑk) − f(ẑk − Δz)
f ' (ẑ k) ≈ . (29.19)

Δz 

In practice, for Δz sufficiently small (but not too small — round-off), Newton with approximate 
derivative will behave similarly to Newton with exact derivative. 

Algorithm 1 Newton algorithm with storage of intermediate approximations  
k ← 0    > tol do 

  
k)k+1 ← ˆk − f (ẑẑ z

f '(ẑk) 
k ← k + 1 

end while 
kZ ← ẑ

k)while  f(ẑ 

Algorithm 2 Newton algorithm without storage  
0ẑ ← ẑ     f(ẑ)    > tol do while 

−f(ẑ)δẑ ← f '(ẑ) 
ẑ ← ẑ + δẑ

end while 
Z ← ẑ

There also exists a method, based on Newton iteration, that directly incorporates a finite 
difference approximation of the derivative by using the function values at the two previous iterations 
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(thus requiring two initial guesses) to construct  

k−1)f(ẑk) − f(ẑ
f ' (ẑ k) ≈ . (29.20) 

ẑk − ẑk−1 

This is called the secant method because the linear approximation of the function is no longer a 
line tangent to the function, but a secant line. This method works well with one variable (with a 
modest reduction in convergence rate); the generalization of the secant method to the multivariate 
case (and quasi-Newton methods) is more advanced. 

Another root-finding method that works well (although slowly) in the univariate case is the 
bisection (or “binary chop”) method. The bisection method finds the root within a given interval 
by dividing the interval in half on each iteration and keeping only the half whose function evaluations 
at its endpoints are of opposite sign — and which, therefore, must contain the root. This method is 
very simple and robust — it works even for non-smooth functions — but, because it fails to exploit 
any information regarding the derivative of the function, it is slow. It also cannot be generalized 
to the multivariate case. 

29.2.4 Convergence Rate 

When Newton works, it works extremely fast. More precisely, if we denote the error in Newton’s 
approximation for the root at the kth iteration as 

Ek = ẑk − Z, (29.21) 

then if 

(i) f(z) is smooth (e.g., the second derivative exists), 

(ii) f ' (Z) = 0 (i.e., the derivative at the root is nonzero), and  

(iii) E0 (the error of our initial guess) is sufficiently small, 

we can show that we achieve quadratic (i.e., Ek+1 ∼ (Ek)2) convergence:   '' (Z)1 f 
Ek+1 ∼ (Ek)2 . (29.22)

2 f ' (Z)

Each iteration doubles the number of correct digits; this is extremely fast convergence. For our 
previous example, the sequence of approximations obtained is shown in Table 29.1. Note that 
the doubling of correct digits applies only once we have at least one correct digit. For the secant 
method, the convergence rate is slightly slower: 

Ek+1 ∼ (Ek)γ , (29.23) 

where γ ≈ 1.618. 

Proof. A sketch of the proof for Newton’s convergence rate is shown below: 
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iteration approximation number of correct digits 
0 4 0 
1 1.9 1 
2 1.1... 1 
3 1.004... 3 
4 1.000005... 6 
5 1.000000000006... 12 

Table 29.1: Convergence of Newton for the example problem.  

k)zk+1 k − 
f(ˆ

ẑ = ẑ (29.24)
f ' (ẑk) 

f(Z + Ek)
Z + Ek+1 Z + Ek −$$ = $$ (29.25)

f ' (Z + Ek) 

( (Ek)2f(f ((Z) + Ekf ' (Z) + 1 '' (Z) + · · · 
Ek+1 2= Ek − (29.26)

f ' (Z) + Ekf '' (Z) + · · · 

f ' (Z) + 1 Ekf '' (Z) + · · · 
Ek+1 2 = Ek − Ek (29.27)'' (Z)f ' (Z)(1 + Ek f + · · · )f ' (Z) 

'' (Z)Ek ff ' (Z)(1 + 1 + · · · 
Ek+1 = Ek − Ek(

(( 
2 f ' (Z) 

; (29.28)

(f (( + · · ) ' (Z)(1 + Ek f '' (Z) · f ' (Z)  

1 since 1+ρ ∼ 1 − ρ + · · · for small ρ, 

'' (Z '' (Z)1 
Ek+1 Ek f 

= Ek − Ek 1 + 1 − Ek f 
+ · · · (29.29)

2 f ' (Z) f ' (Z) 
'' (Z)1 

Ek+1 = E  
k − E  

k + (Ek)2 f 
+ · · · (29.30)

2 f ' (Z) 
'' (Z)

Ek+1 =
1 f 

(Ek)2 + · · · . (29.31)
2 f ' (Z) 

We thus confirm the quadratic convergence. 

Note that, if f ' (Z) = 0, we must stop at equation (29.26) to obtain the linear (i.e., Ek+1 ∼ Ek) 
convergence rate 

1 (Ek)2f '' (Z) + · · · 
Ek+1 2= Ek − (29.32)

Ekf '' (Z) 

Ek+1 =
1 
Ek + · · · . (29.33)

2 

In this case, we gain only a constant number of correct digits after each iteration. The bisection 
method also displays linear convergence. 
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29.2.5 Newton Pathologies 

Although Newton often does work well and very fast, we must always be careful not to excite patho
logical (i.e., atypically bad) behavior through our choice of initial guess or through the nonlinear 
function itself. 

For example, we can easily — and, thus, this might be less pathology than generally bad 
behavior — arrive at an “incorrect” solution with Newton if our initial guess is poor. For instance, 
in our earlier example of Figure 29.4, say that we are interested in finding a positive root, Z > 0, of 

0f(z). If we had chosen an initial guess of ẑ = −4 instead of ẑ0 = +4, we would have (deservingly) 
found the root Z = −3 instead of Z = 1. Although in the univariate case we can often avoid this 
behavior by basing our initial guess on a prior inspection of the function, this approach becomes 
more difficult in higher dimensions. 

Even more diabolical behavior is possible. If the nonlinear function has a local maximum or 
minimum, it is often possible to excite oscillatory behavior in Newton through our choice of initial 
guess. For example, if the linear approximations at two points on the function both return the 
other point as their solution, Newton will oscillate between the two indefinitely and never converge 
to any roots. Similarly, if the first derivative is not well behaved in the vicinity of the root, then 
Newton may diverge to infinity. 

We will later address these issues (when possible) by continuation and homotopy methods. 

29.3 Multivariate Newton 

29.3.1 A Model Problem 

Now we will apply the Newton method to solve multivariate nonlinear systems of equations. For 
example, we can consider the simple bivariate system of nonlinear equations 

2 2f1(z1, z2) = z1 + 2z2 − 22 = 0 , 
(29.34) 

2 2f2(z1, z2) = 2z1 + z − 17 = 0 .2 

Note that f1 and f2 are the two paraboloids each with principal axes aligned with the coordinate 
directions; we plot f1 and f2 in shown in Figure 29.5. We wish to find a zero Z = (z1 z2)

T of 
f(z) = (f1(z1, z2) f2(z1, z2))T such that f(Z) = 0. We can visualize Z as the intersections of the 
ellipses f1 = 0 (the intersection of paraboloid f1 with the zero plane) and f2 = 0 (the intersection 
of paraboloid f2 with the zero plane). The four solutions (Z1, Z2) = (±2, ±3) are shown as the red 
circles in the contour plot of Figure 29.6. 

29.3.2 The Method 

The Newton method for the multivariate case follows the same approach as for the univariate case: 

•	 Start with an initial approximation ẑ0 of a root to the nonlinear system f(z) = 0. 

0•	 Linearize the system at ẑ and solve the resulting linear system to derive a better approxi
1mation ẑ . 

•	 Continue linearizing and solving until the norm of f(ẑN ) is within some desired tolerance of 
zero. 

However, the multivariate case can be much more challenging computationally. 
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We present the method for the general case in which z is an n-vector, (z1 z2 · · · zn)
T and 

f(z) is also an n-vector, (f1(z) f2(z) · fn(z))
T . This represents n nonlinear equations in n 

unknowns. (Of course, even more generally, we could consider more equations than unknowns or 
less equations than unknowns.) To linearize the multivariate system, we again use a first-order 
Taylor series expansion, which, for a single multivariate function linearized at the point ẑk, is given 
by 

∂f ∂f ∂f k k kfk (z1 − ẑ1 ) + (z2 − ẑ2 ) + · · · + − ẑ ) + f(ẑk) (29.35)linear(z) ≡ (zn n∂z1 ˆk ∂z2 ˆk ∂zn ˆk z z z 
(cf. equation (29.4) in the univariate case). Because we have n equations in n variables, we must 
linearize each of the equations (f1(z) f2(z) . . . fn(z))

T and then, per the Newton recipe, set 
(f1(ẑ

k) = 0 . . . fn(ẑ
k) = 0)T . Our full linearized system looks like 

fk k+1) ≡ 
∂f1 k+1 k ∂f1 k+1 k ∂f1 k+1 k 

1,linear(ẑ (ẑ1 − ẑ1 ) + (ẑ2 − ẑ2 ) + · · · + (ẑn − ẑn) + f1(ẑk) = 0 , 
ˆ ˆ ˆ∂z1 k ∂z2 k ∂zn k z z z 

(29.36) 

fk k+1) ≡ 
∂f2 k+1 k ∂f2 k+1 k ∂f2 k+1 k 

2,linear(ẑ (ẑ1 − ẑ1 ) + (ẑ2 − ẑ2 ) + · · · + (ẑn − ẑn) + f2(ẑk) = 0 , 
ˆ ˆ ˆ∂z1 k ∂z2 k ∂zn k z z z 

(29.37) 

up through 

fk k+1) ≡ 
∂fn k+1 k ∂fn k+1 k ∂fn k+1 k 

n,linear(ẑ (ẑ1 − ẑ1 ) + (ẑ2 − ẑ2 ) + · · · + (ẑn − ẑn) + fn(ẑk) = 0 
∂z1 ˆk ∂z2 ˆk ∂zn ˆk z z z 

(29.38) 
(cf. equation (29.5) in the univariate case). 

We can write the linear system of equations (29.36)–(29.38) in matrix form as ⎤⎡⎤⎡⎤⎡⎤⎡ 
∂f1 ∂f1 ∂f1 k+1 k(ˆ 1 ) k)z − ẑ  0 · · ·  f1(ẑ1∂z1 ∂z2 ∂zn 

fk k+1) ≡zlinear(ˆ

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣  

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣  

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦  

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦  

+  

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣  

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦  

=  

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣  

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦  

,  (29.39)  

∂f2 ∂f2 ∂f2· · · ∂z1 ∂z2 ∂zn 

. . .. . . . .  .. . . 

k+1 k 
2 ) k)(ẑ − ẑ  0  

.  .  .  

f2(ẑ2 

.  .  .  
.  .  .  

∂fn ∂fn ∂fn k+1 k· · · (ẑ − ẑ ) fn(ẑ
k) 0∂z1 ∂z2 ∂zn n n

kẑ 
or, equivalently, 

kJ(ẑk)δẑ = −f(ẑk) . (29.40) 

Here the n × n Jacobian matrix J is defined as the matrix of all first-order partial derivatives of 
the function vector (f1 . . . fn)

T with respect to the state vector (z1 . . . zn)
T: ⎤⎡ 

J(z) =  

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣  

∂f1 ∂f1 ∂f1· · · ∂z1 ∂z2 ∂zn 

∂f2 ∂f2 ∂f2· · · ∂z1 ∂z2 ∂zn 

. . .. . . . . .. . . 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦  

, (29.41)  

∂fn 
∂z1 

∂fn 
∂z2 

· · · ∂fn 
∂zn 

z 
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such that the i, jth component of the Jacobian corresponds to the partial derivative of the ith 

function with respect to the jth variable, 

Jij (z) = 
∂fi 
∂zj 

(z) . (29.42) 

Thus J(ẑ k) denotes the Jacobian matrix for the system evaluated at the point ẑ k . Note also that 
δẑk is the displacement vector pointing from the current approximation ẑk to the next approxima

k+1tion ẑ ⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣  

k+1 k(ẑ − ẑ1 )1 

k+1 k(ẑ − ẑ2 )2 

. . . 

k+1 k(ẑ − ẑ )n n

⎥⎥⎥⎥⎥⎥⎥⎥⎦  

kδẑ =  .  (29.43)  

Hence δẑk is the Newton update to our current iterate. 

29.3.3 An Example 

We can now apply Newton to solve the n = 2 model problem described in Section 29.3.1: 

2 2f1(z1, z2) = z1 + 2z2 − 22 = 0 , 
(29.44) 

2 2f2(z1, z2) = 2z1 + z2 − 17 = 0 . 

We first compute the elements of the Jacobian matrix as 

∂f1 ∂f1 ∂f2 ∂f2
J11 = = 2z1, J12 = = 4z2, J21 = = 4z1, J22 = = 2z2 , (29.45)

∂z1 ∂z2 ∂z1 ∂z2 

and write the full matrix as ⎤⎡⎤⎡ 
J11 J12 2z1 4z2 

J(z) =  ⎣ ⎦ = ⎦⎣ . (29.46)  
J21 J22 4z1 2z2 

We can now perform the iteration. 
0We start with initial guess ẑ0 = (10 10)T . We next linearize around ẑ to get ⎤⎡⎤⎡ 

20 40 278  
f0 
linear(z) ≡ J(ẑ0)(z − ẑ0) + f(ẑ0) = ⎣ ⎦ δẑ0 + ⎦ ⎣ .  (29.47)  

40 20 283 

0Note that we can visualize this system as two planes tangent to f1 and f2 at ẑ . We now solve the 
linearized system  ⎤⎡⎤⎡⎤⎡ 

20 40 278 0  
f0 1) ≡zlinear(ˆ ⎣ ⎦ δẑ0 + ⎣ ⎦ = ⎦ ⎣ (29.48)  

40 20 283 0  
or ⎤⎡⎤⎡ 

20 40 −278  ⎣ ⎦ δz 0 = ⎦⎣ (29.49)  
40 20 −283  
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to find ⎡ ⎤ 
−4.8 

0δẑ = ⎣ ⎦ ; (29.50) 
−4.55 

thus the next approximation for the root of f(z) is given by ⎡ ⎤ 
5.2 

1 0 0 ẑ = ẑ + δẑ = ⎣ ⎦ . (29.51) 
5.45 

We repeat the procedure to find ⎡ ⎤ ⎡ ⎤ 
10.4 21.8 64.445 

1f1 z 1)(z − ẑ1) + f(ẑ1) = ⎣ ⎦ δẑ + ⎣ ⎦ , (29.52)linear(z) ≡ J(ˆ
20.8 10.9 66.7825 

f1 z 2) = 0 (29.53)linear(ˆ ⎡ ⎤ 
2.9846 

ẑ2 = ⎣ ⎦ ; (29.54) 
3.5507 ⎡ ⎤ ⎡ ⎤ 
5.9692 14.2028 12.1227 

2f2 z 2)(z − ẑ2) + f(ẑ2) = ⎣ ⎦ δẑ + ⎣ ⎦ , (29.55)linear(z) =≡ J(ˆ 
11.9385 7.1014 13.4232  

f2 
linear(ẑ

3) = 0 (29.56) ⎡ ⎤ 
2.1624 

ẑ3 = ⎣ ⎦ . (29.57) 
3.0427 

We see that the solution rapidly approaches the (nearest) exact solution Z = (2 3)T . 

29.3.4 The Algorithm 

The multivariate Newton algorithm is identical to the univariate algorithm, except that now for 
each pass through the while loop we must now solve a linearized system of equations involving the 
Jacobian matrix. 

Algorithm 3 Multivariate Newton algorithm without storage  
0 ẑ ← ẑ

while If(ẑ)I > tol do 
{Solve the linearized system for δẑ.}
J(ẑ)δẑ = −f(ẑ) 
ẑ ← ẑ + δẑ

end while 
Z ← ẑ

We can see that the computational cost for the multivariate Newton iteration is essentially the 
total number of iterations multiplied by the cost to solve an n × n linear system — which, if dense, 
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could be as much as O(n3) and, if sparse, as little as O(n) operations. Additionally, for “pure” 
Newton, the Jacobian needs to be recomputed (O(n2) operations) at each iteration. (In “impure” 
Newton the Jacobian sometimes is held fixed for several iterations or updated selectively.) 

Note that, as before in the univariate case, we can substitute a finite difference approximation for 
the Jacobian if we can not (or choose not to) use the analytical expressions. Here we first introduce 
a scalar Δz (small); note that Δz is not related to δz — i.e., this is not a secant approach. Then 
we approximate, for 1 ≤ i ≤ n, 1 ≤ j ≤ n, 

∂fi fi(z +Δzej ) − fi(z)
Jij (z) ≡ (z) ≈ ≡ JJij (z), (29.58)

∂zj Δz 

where ej is the unit vector in the j-direction such that z + Δzej differs from z in only the jth 

component — a partial difference approximation to the partial derivative ∂fi . Note that to compute∂zj 

the full finite difference approximation n × n matrix JJ(z) we need O(n2) function evaluations. 

29.3.5 Comments on Multivariate Newton 

For multivariate Newton, both the convergence rate and the pathologies are similar to the univariate 
case, although the pathologies are somewhat more likely in the multivariate case given the greater 
number of degrees of freedom. 

The main difference for the multivariate case, then, is the relative cost of each Newton itera
tion (worst case O(n3) operations) owing to the size of the linear system which must be solved. 
For this reason, Newton’s rapid convergence becomes more crucial with growing dimensionality. 
Thanks to the rapid convergence, Newton often outperforms “simpler” approaches which are less 
computationally expensive per iteration but require many more iterations to converge to a solution. 

29.4 Continuation and Homotopy 

Often we are interested not in solving just a single nonlinear problem, but rather a family of 
nonlinear problems f(Z; µ) = 0 with real parameter µ which can take on a sequence of values 
µ(1), . . . , µ(p). Typically we supplement f(Z; µ) = 0 with some simple constraints or continuity 
conditions which select a particular solution from several possible solutions. 

We then wish to ensure that, (i) we are able to start out at all, often by transforming the 
initial problem for µ = µ(1) (and perhaps also subsequent problems for µ = µ(i)) into a series 
of simpler problems (homotopy) and, (ii) once started, and as the parameter µ is varied, we 
continue to converge to “correct” solutions as defined by our constraints and continuity conditions 
(continuation). 

29.4.1 Parametrized Nonlinear Problems: A Single Parameter 

Given f(Z; µ) = 0 with real single parameter µ, we are typically interested in how our solution 
Z changes as we change µ; in particular, we now interpret (à la the implicit function theorem) Z 
as a function Z(µ). We can visualize this dependency by plotting Z (here n = 1) with respect to 
µ, giving us a bifurcation diagram of the problem, as depicted in Figure 29.7 for several common 
modes of behavior. 

Figure 29.7(a) depicts two isolated solution branches with two, distinct real solutions over 
the whole range of µ. Figure 29.7(b) depicts two solution branches that converge at a singular 
point , where a change in µ can drive the solution onto either of the two branches. Figure 29.7(c) 
depicts two solution branches that converge at a limit point , beyond which there is no solution. 
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(a) isolated branches (b) singular point 

(c) limit point (d) isola 

(e) pitchfork 

Figure 29.7: Bifurcation Diagram: Several Common Modes of Behavior. 
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Figure 29.8: Simple mechanical linkage. 

Figure 29.7(d) depicts an isola, an isolated interval of two solution branches with two limit points 
for endpoints. Figure 29.7(e) depicts a single solution branch that “bifurcates” into several solutions 
at a pitchfork ; pitchfork bifurcations often correspond to nonlinear dynamics that can display either 
stable (represented by solid lines in the figure) or unstable (represented by dotted lines) behavior, 
where stability refers to the ability of the state variable Z to return to the solution when perturbed. 

Note that, for all of the mentioned cases, when we reach a singular or limit point — characterized 
by the convergence of solution branches — the Jacobian becomes singular (non-invertible) and hence 
Newton breaks down unless supplemented by additional conditions. 

29.4.2 A Simple Example 

We can develop an intuitive understanding of these different modes of behavior and corresponding 
bifurcation diagrams by considering a simple example. JWe wish to analyze the simple mechanical linkage shown in Figure 29.8 by finding X corre
sponding to an arbitrary θ for given (constant) HJ , RJ, and LJ. In this example, then, θ corresponds 
to the earlier discussed generic parameter µ. 

We can find an analytical solution for XJ(θ; J H, JR, J L) by solving the geometric constraint 

(XJ − RJ cos θ)2 + ( HJ − RJ sin θ)2 = LJ2 , (29.59) 

which defines the distance between the two joints as LJ. This is clearly a nonlinear equation, owing to 
the quadratic term in x̃. We can eliminate one parameter from the equation by non-dimensionalizing 
with respect to LJ, giving us 

(X − R cos θ)2 + (H − R sin θ)2 = 1 , (29.60) 

where X  =   LX , R =  
L R , and H  =   LH .  Expanding and simplifying, we get  

aX2 + bX + c ≡ f(X; θ; R, H) = 0 , (29.61) 

where a = 1, b = −2R cos θ, and c = R2 + H2 − 2HR sin θ − 1. A direct application of the quadratic 
formula then gives us the two roots 

√ 
−b + b2 − 4ac 

X+ = 
2a 

, 

√ (29.62) 
−b − b2 − 4ac 

X− = 
2a 

, 
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which may be real or complex. 
We observe three categories for the number of solutions to our quadratic equation depending on √ 

the value of the discriminant Δ(θ; R, H) ≡ b2 − 4ac. First, if Δ < 0, Δ is imaginary and there is J L + Jno (real) solution. An example is the case in which H > J R. Second, if Δ = 0, there is exactly 
−b πone solution, X = . An example is the case in which HJ = LJ + RJ and θ = 2 . Third, if Δ > 0,2a 

there are two distinct solutions, X+ and X−; an example is shown in Figure 29.8. Note that with 
our simple crank example we can obtain all the cases of Figure 29.7 except Figure 29.7(e). 

We note that the case of two distinct solutions is new — our linear systems of equations (for 
the univariate case, f(x) = Ax − b) had either no solution (A = 0, b = 0; line parallel to x axis), 
exactly one solution (A = 0; line intersecting x axis), or an infinite number of solutions (A = 0, 
b = 0; line on x axis). Nonlinear equations, on the other hand, have no such restrictions. They 
can have no solution, one solution, two solutions (as in our quadratic case above), three solutions 
(e.g., a cubic equation) — any finite number of solutions, depending on the nature of the particular 
function f(z) — or an infinite number of solutions (e.g., a sinusoidal equation). For example, if 
f(z) is an nth-order polynomial, there could be anywhere from zero to n (real) solutions, depending 
on the values of the n + 1 parameters of the polynomial. 

It is important to note, for the cases in which there are two, distinct solution branches corre
sponding to X+ and X−, that, as we change the θ of the crank, it would be physically impossible to 
jump from one branch to the other — unless we stopped the mechanism, physically disassembled 
it, and then reassembled it as a mirror image of itself. Thus for the physically relevant solution we 
must require a continuity condition, or equivalently a constraint that requires |X(θ(i)) − X(θ(i−1))|
not too large or perhaps X(θ(i))X(θ(i−1)) > 0; here θ(i) and θ(i−1) are successive parameters in our 
family of solutions. 

In the Introduction, Section 29.1, we provide an example of a linkage with two degrees of 
freedom. In this robot arm example the parameter µ is given by X, the desired position of the end 
effector. 

29.4.3 Path Following: Continuation 

As already indicated, as we vary our parameter µ (corresponding to θ in the crank example), 
we must reflect any constraint (such as, in the crank example, no “re-assembly”) in our numerical 
approach to ensure that the solution to which we converge is indeed the “correct” one. One approach 
is through an appropriate choice of initial guess. Inherent in this imperative is an opportunity 
— we can exploit information about our previously converged solution not only to keep us on 
the appropriate solution branch, but also to assist continued (rapid) convergence of the Newton 
iteration. 

We denote our previously converged solution to f(Z; µ) = 0 as Z(µ(i−1)) (we consider here 
the univariate case). We wish to choose an initial guess Z (µ(i)) to converge to (a nearby root) 
Z(µ(i)) = Z(µ(i−1) + δµ) for some step δµ in µ. The simplest approach is to use the previously 
converged solution itself as our initial guess for the next step,

 Z(µ(i)) = Z(µ(i−1)) . (29.63) 

This is often sufficient for small changes δµ in µ and it is certainly the simplest approach. 
We can improve our initial guess if we use our knowledge of the rate of change of Z(µ) with 

respect to µ to help us extrapolate, to wit

dZ Z(µ(i)) = Z(µ(i−1)) + δµ . (29.64)
dµ 
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We can readily calculate dZ 
dµ as 

dZ 
dµ 

= 
− ∂f 

∂µ 
∂f 
∂z 

, (29.65) 

since 

1 

f(Z(µ); µ) = 0 ⇒ 
df 
dµ 

(Z(µ); µ) ≡ 
∂f 
∂z 

dZ 
dµ 

+ 
∂f 
∂µ i 

i
ii dµ 

dµ 
= 0 ⇒ 

dZ 
dµ 

= 
−∂f 

∂µ 
∂f 
∂z 

, (29.66) 

by the chain rule. 

29.4.4 Cold Start: Homotopy 

In many cases, given a previous solution Z(µ(i−1)), we can use either of equations (29.63) or (29.64) 
to arrive at an educated guess Z(µ(i)) for the updated parameter µ(i). If we have no previous 
solution, however, (e.g., i = 1) or our continuation techniques fail, we need some other means of 
generating an initial guess Z(µ(i)) that will be sufficiently good to converge to a correct solution. 

A common approach to the “cold start” problem is to transform the original nonlinear prob
lem f(Z(µ(i)); µ(i)) = 0 into a form f̃(Z(µ(i), t); µ(i), t) = 0, i.e., we replace f(Z; µ(i)) = 0 with 
f̃(ZJ; µ(i), t) = 0. Here t is an additional, artificial , continuation parameter such that, when t = 0, 
the solution of the nonlinear problem 

f̃(ZJ(µ(i), t = 0); µ(i), t = 0) = 0 (29.67) 

is relatively simple (e.g., linear) or, perhaps, coincides with a preceding, known solution, and, when 
t = 1, 

f̃(z; µ(i), t = 1) = f(z; µ(i)) (29.68) 

such that f̃(ZJ(µ(i), t = 1); µ(i), t = 1) = 0 implies f(ZJ(µ(i)); µ(i)) = 0 and hence Z(µ(i)) (the desired 
solution) = ZJ(µ(i), t = 1). 

We thus transform the “cold start” problem to a continuation problem in the artificial parameter 
t as t is varied from 0 to 1 with a start of its own (when t = 0) made significantly less “cold” by 
its — by construction — relative simplicity, and an end (when t = 1) that brings us smoothly to 
the solution of the original “cold start” problem. 

As an example, we could replace the crank function f of (29.61) with a function f̃(X; θ, t; R, H) = 
at X2 + bX + c such that for t = 0 the problem is linear and the solution readily obtained. 

29.4.5 A General Path Approach: Many Parameters 

We consider now an n-vector of functions 

f(z; µ) = (f1(z; µ) f2(z; µ) . . . fn(z; µ))T (29.69) 

that depends on an n-vector of unknowns z 

z = (z1 z2 . . . zn)
T (29.70) 

and a parameter £-vector µ (independent of z) 

µ = (µ1 µ2 . . . µ )
T . (29.71) 
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We also introduce an inequality constraint function    
1 if constraint satisfied 

C(Z) = . (29.72) 
0 if constraint not satisfied 

Note this is not a constraint on z but rather a constraint on the (desired) root Z. Then, given µ, 
we look for Z = (Z1 Z2 . . . Zn)

T such that ⎧⎨ ⎩  

f(Z; µ) = 0 
. (29.73) 

C(Z) = 1 

In words, Z is a solution of n nonlinear equations in n unknowns subject which satisfies the 
constraint C. 

Now we consider a path or “trajectory” — a sequence of p parameter vectors µ(1), . . . , µ(p). 
We wish to determine Z(i), 1 ≤ i ≤ p, such that ⎧⎨ ⎩  

f(Z(i); µ(i)) = 0 
. (29.74) 

C(Z(i)) = 1 

We assume that Z(1) is known and that Z(2), . . . , Z(p) remain to be determined. We can expect, 
then, that as long as consecutive parameter vectors µ(i−1) and µ(i) are sufficiently close, we should 
be able to use our continuation techniques equations (29.63) or (29.64) to converge to a correct 
(i.e., satisfying C(Z(i)) = 1) solution Z(i). If, however, µ(i−1) and µ(i) are not sufficiently close, 
our continuation techniques will not be sufficient (i.e. we will fail to converge to a solution at all 
or we will fail to converge to a solution satisfying C) and we will need to apply a — we hope — 
more fail-safe homotopy. 

We can thus combine our continuation and homotopy frameworks into a single algorithm. One 
such approach is summarized in Algorithm 4. The key points of this algorithm are that (i) we are 
using the simple continuation approach given by equation (29.63) (i.e., using the previous solution 
as the initial guess for the current problem), and (ii) we are using a bisection-type homotopy that, 
each time Newton fails to converge to a correct solution, inserts a new point in the trajectory 
halfway between the previous correct solution and the failed point. The latter, in the language of 
homotopy, can be expressed as 

f̃(z; µ(i), t) = f(z; (1 − t)µ(i−1) + tµ(i)) (29.75) 

with t = 0.5 for the inserted point. 
Although there are numerous other approaches to non-convergence in addition to Algorithm 4, 

such as relaxed Newton — in which Newton provides the direction for the update, but then we take 
just some small fraction of the proposed step — Algorithm 4 is included mainly for its generality, 
simplicity, and apparent robustness. 
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Algorithm 4 General Path Following Algorithm  
for i = 2: p do 
Z(i) ← Z(i−1) 
repeat 

Z(i) ← {Solve f(z; µ(i)) = 0 via Newton given initial guess Z(i)}
if Newton does not converge OR C(Z(i)) = 1 then 

for j = p : − 1: i do 
µ(j+1) ← µ(j) {Shift path parameters by one index to accommodate insertion}

end for 
µ(i) ← 1 (µ(i−1) + µ(i)) {Insert point in path halfway between µ(i−1) and µ(i)}2 
p ← p + 1 {Increment p to account for insertion}

end if 
until Newton converges AND C(Z(i)) = 1 

end for 
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