PANEL METHODS

- THE PRINCIPAL ATTRIBUTES OF THE NUMERICAL SOLUTION OF THE GREEN INTEGRAL EQUATION BY PANEL METHODS ARE DESCRIBED BELOW
- HOST OF WHAT FOLLOWS DESCRIBES VERY WELL

 THE MOST POPULAR PANEL METHODS FOR THE

 SOLUTION OF THE ZERO-SPEED RADIATION
 DIFFRACTION PROBLEMS IN THE FREQUENCY

 DOWAIN. (WAMIT PANEL METHOD)
- THE NUMERICAL SOLUTION OF THE RANKINE

 PANEL METHODS FOR THE SHIP FLOW PROBLEM

 AND THEIR EXTENSIONS, REQUIRE A STABILITY

 ANALYSIS FROM FIRST PRINCIPLES. THEY ARE

 NOT DESCRIBED HERE BUT HAVE BEEN

 DEVELOPED AND IMPLEMENTED IN THE

 SWAN PANEL METHOD.
- IN THE ZERO-SPEED FREQUENCY DOMAIN

 PANEL HETHODS, THE WAVE GREEN FUNCTION

 IS EVALUATED BY SPECIALIZED VERY

 EFFICIENT SUBR WTINES NOT DISCUSSED

 FURTHER HERE.

- DESCRIBE THE BODY SURFACE BY A COLLECTION

 OF QUADRILATERAL PANELS (FACETS) ARRANGED

 IN A MANNER SO THAT THE MIDPOINTS OF

 ADJACENT SIDES COINCIDE. IT CAN BE SHOWN

 THAT THIS IS A LWAYS POSSIBLE!
- THE ABOVE ARRANGEMENT CAN BE SHOWN

 TO LEAVE GAPS BETWEEN PANELS THAT

 ATTAIN THEIR MAXIMUM HAGNITUDE NEAR

 THE VERTICES. IN PRACTICE THESE GAPS

 HAVE BEEN FOUND TO LEAD TO NO SIGNIFICANT

 ERRORS
- ASSONE THAT OVER FACET i, THE UNKNOWN VELOCITY POTENTIAL TAKES A CONSTANT VALUE θ_i , i=1,...,N WHERE N 19 THE TOTAL NUMBER OF FACETS OVER S_B .

- DEFINE THE CENTROID OF THE PLANAR QUADRILATERAL DENOTED AS FACET i
 BY ITS VECTOR POSITION \hat{X}_i
- OVER FACET i.

WITH THESE DEFINITIONS THE GREEN INTEGRAL EQUATION MAY BE DISCRETIZED EASILY AS FOLLOWS:

$$\frac{1}{2} \varphi_{i} + \sum_{i=1}^{N} \varphi_{i} \int_{S_{i}}^{S_{i}} ds_{x} \frac{\partial G(\vec{x}; \vec{\xi}_{i})}{\partial n_{i}}$$

$$= \sum_{i=1}^{N} V_{i} \int_{S_{i}}^{S_{i}} ds_{x} G(\vec{x}; \vec{\xi}_{i}), i=1,...,N$$

$$= \sum_{i=1}^{N} V_{i} \int_{S_{i}}^{S_{i}} ds_{x} G(\vec{x}; \vec{\xi}_{i}), i=1,...,N$$

WHERE THE INTEGRATION OVER THE SURFACE OF THE J-TH PANEL S; IS CARRIED OUT WITH RESPECT TO THE X DUNNY VARIABLE WHICH IS ALLOWED TO VARY OVER THE SURFACE OF THE J-TH PANEL.

THE LOCATION OF THE 1-TH VECTOR 3: IS
FIXED AND POINTS TO THE CENTRO 10 OF THE
1-TH PANEL.

IN MATRIX NOTATION

$$\left[\frac{1}{2}\mathbf{I} + \mathbf{D}\right]\vec{\varphi} = 5\vec{\nabla}$$

WHERE :

I : IDENTITY MATRIX WITH 1'S

OVER THE DIAGONAL AND ZEROS

ELSEWHERE

$$D = Dii = \int ds_{x} \frac{\partial G(\vec{x}i\vec{\xi}i)}{\partial n_{j}} = \begin{cases} Dipole \\ Influence \\ Coefficient \\ Matrix \end{cases}$$

$$S = Sii = \int dS_{x} G(\vec{x};\vec{\xi}i) = \begin{cases} Source \\ Influence \\ Coefficient \\ Matrix \end{cases}$$

THE SOLUTION OF THE ABOVE MATRIX EQUATION FOR THE UNKNOWN VECTOR:

$$\vec{\varphi} = (\varphi_1, ..., \varphi_i, ..., \varphi_N)^T$$

IN TERMS OF THE KNOWN VECTOR OF NORMAL VELOCITIES:

$$\overrightarrow{\nabla} = (V_1, \dots, V_i, \dots, V_N)^T$$

MAY BE CARRIED OUT WITH STANDARD DIRECT OR ITERATIVE DENSE MATRIX SOLVERS.