MIT OpenCourseWare http://ocw.mit.edu

2.61 Internal Combustion Engines Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1

Prof. Wai Cheng Sloan Automotive Lab, MIT

Transportation and Mobility

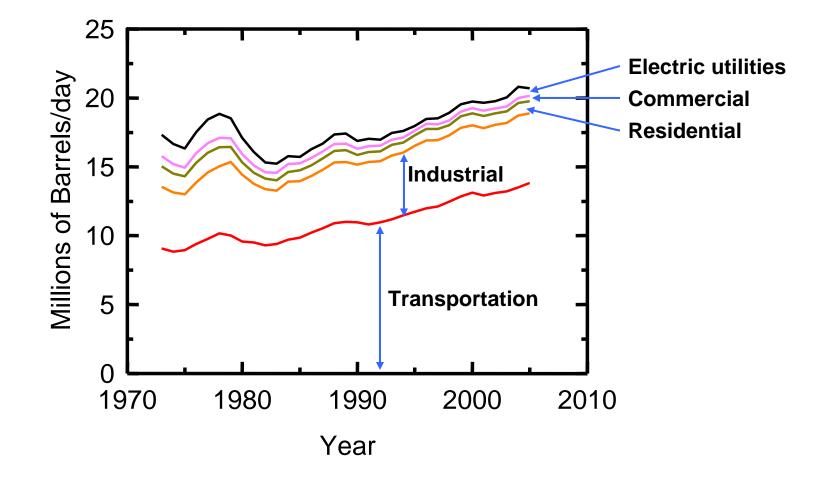
- Transportation/mobility is a vital to modern economy
 - -Transport of People
 - -Transport of goods and produce
- People get accustomed to the ability to travel

Transportation needs special kind of energy source

- Vehicles need to carry source of energy on board
- Hydrocarbons are unparalleled in terms of energy density
 - For example, look at refueling of gasoline

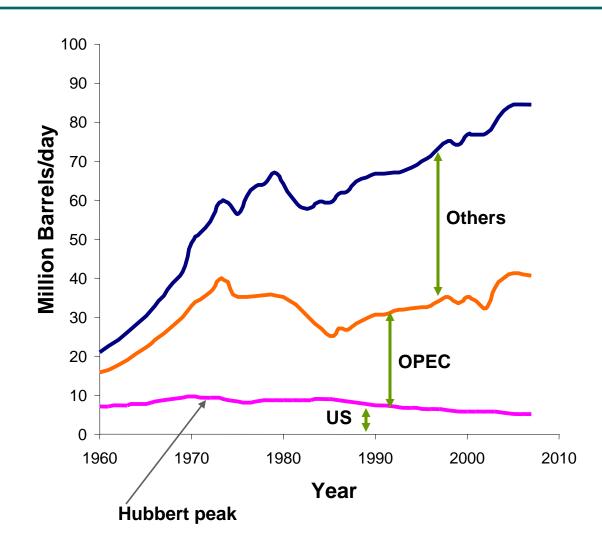
Liquid hydrocarbons !

- ~40 Liters in 2 minutes (~0.25 Kg/sec)
- Corresponding energy flow
 - = 0.25 Kg/sec x 44 MJ/Kg
 - = 11 Mega Watts


What is in a barrel of oil ?

(42 gallon oil \rightarrow ~46 gallon products)

Typical US outpu	It
Lubricants	0.90%
Other Refined Products	1.50%
Asphalt and Road Oil	1.90%
Liquefied Refinery Gas	2.80%
Residual Fuel Oil	3.30%
Marketable Coke	5.00%
Still Gas	5.40%
Jet Fuel	12.60%
Distillate Fuel Oil	15.30%
Finished Motor Gasoline	51.40%


Source: California Energy Commission, Fuels Office

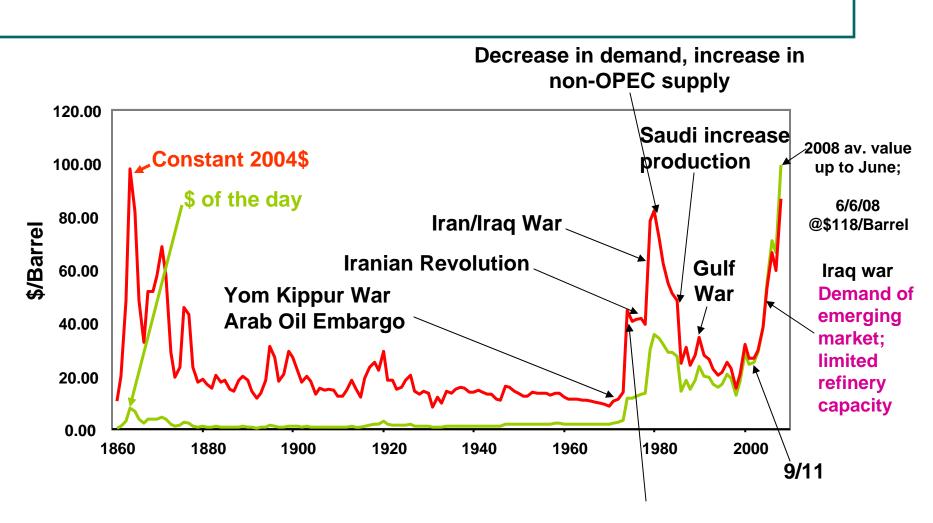
US Use of Petroleum by sector

Source: US Dept. of Energy

Oil Supply (annual average up to 2007)

Source: EIA

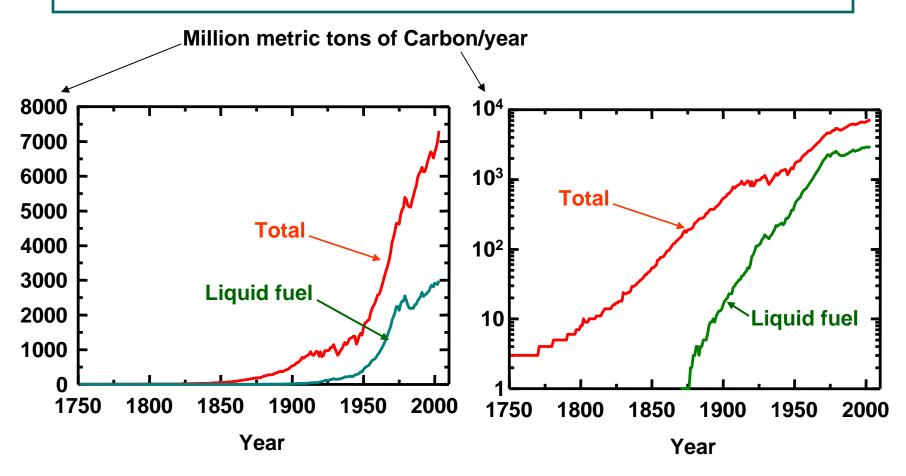
The world Hubbert peak


(excluding OPEC & Russian production)

2003

Image removed due to copyright restrictions. Please see Fig. 9 in Zittel, Werner, and Jörg Schindler.

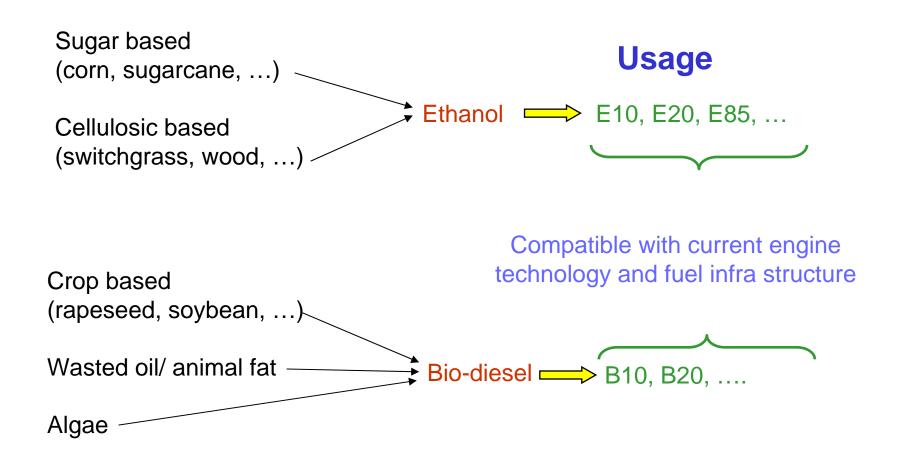
"Future World Oil Supply." Salzburg, Germany: International Summer School on the Politics and Economics of Renewable Energy, July 2002.


Petroleum price

Oil from North Sea, Alaska

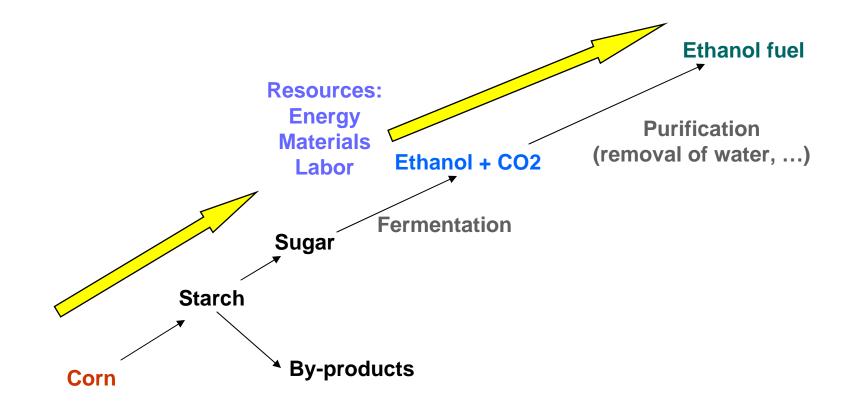
Sources: Data from EIA; event labels from WTRG Economics

CO₂ emissions from fossil fuel

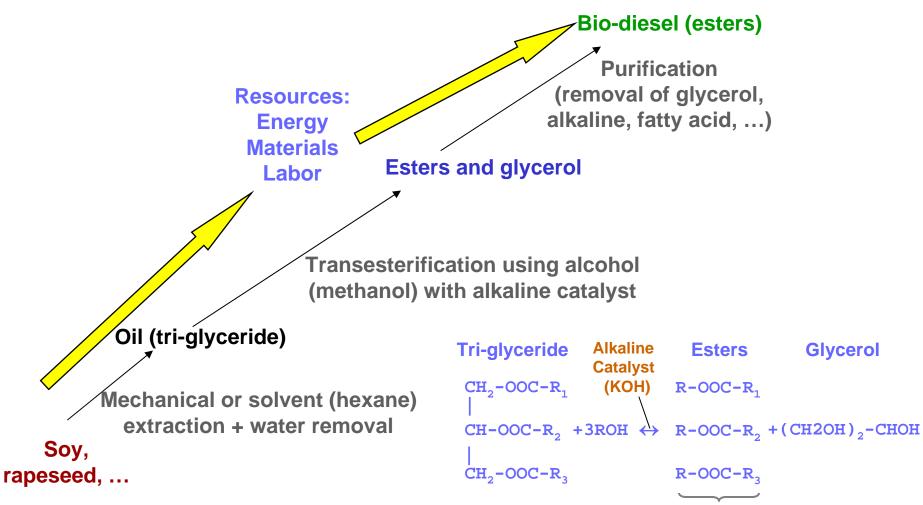


The drive to bio-fuel

- Increasing demand of liquid fuel for transportation
 - Population
 - Society affluence
- Drive for lower CO2 production
- Perceived decline of petroleum reserve
- Fuel price
- Government Policy
 - Tax credit
 - Required bio-fuel content


What is bio-fuel?

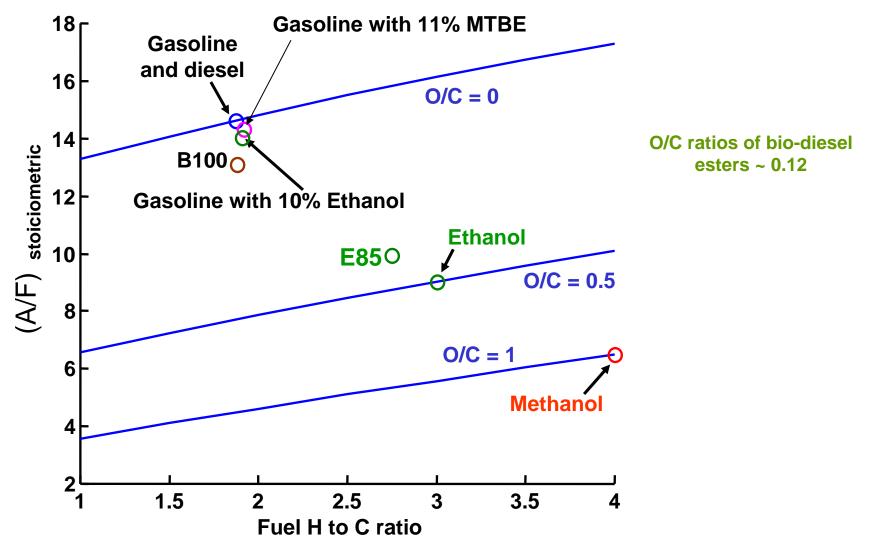
Dominant biofuels



(BTL fuel not included in this discussion)¹³

Example: Ethanol production from corn

Example: bio-diesel production


⁽typically 8-22 C to 2 O)

Combustion characteristics of bio-fuel

	Cetane number	s.g.	LHV (MJ/kg)	LHV (MJ/L)	B10 LHV (MJ/L)	B20 LHV (MJ/L)	LHV B10/ Diesel (by vol.)	LHV B20/ Diesel (by vol.)
Diesel Soybean oil methylester Rapeseed oil methylester Sunflower oil methylester Frying oil ethylester	45-55 50.9 52.9 49 61	0.820 0.885 0.882 0.880 0.872	43.22 37.01 37.30 38.53 37.19	35.44 32.76 32.90 33.91 32.41	35.17 35.19 35.29 35.14	34.91 34.93 35.14 34.84	0.992 0.993 0.996 0.991	0.985 0.986 0.991 0.983
	Octane number	s.g.	LHV (MJ/kg)	LHV (MJ/L)	E10 LHV (MJ/L)	E85 LHV (MJ/L)	LHV E10/ Gasoline (by vol.)	LHV E85/ Gasoline (by vol.)
Gasoline Ethanol	95 107	0.780 0.785	44.00 26.90	34.32 21.12	33.00	23.10	0.962	0.673

Bio-ester data from Graboski and McCormick, Prog. Energy Comb. Sc., Vol. 24, 1998

Stoichiometric requirement for different fuels

Relative CO2 production from burning different fuel molecules

Image removed due to copyright restrictions. Please see Amann, Charles A. "The Passenger Car and The Greenhouse Effect." *SAE Journal of Passenger Cars* 99 (October 1990): 902099.

Effects of Oxygenates on PM emission

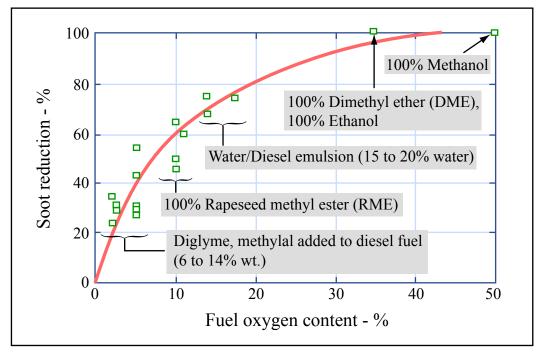


Figure by MIT OpenCourseWare.

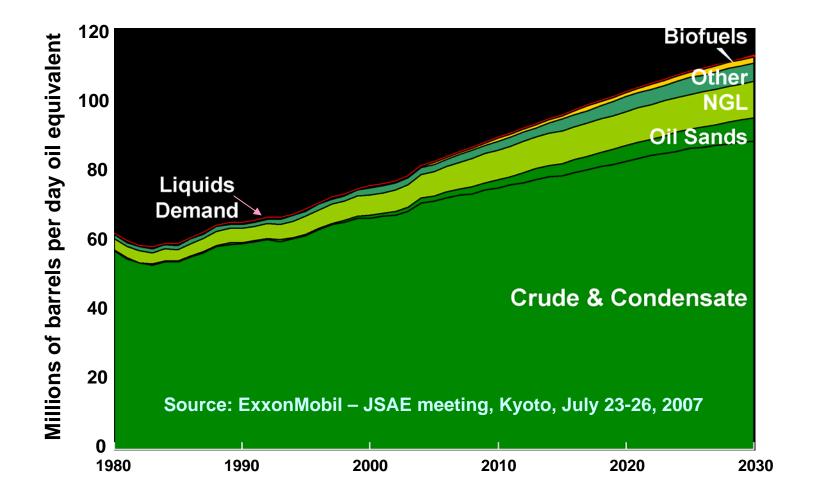
AVL Publication (by Wofgang Cartellieri in JSME 1998 Conference in Toykyo)

Bio-fuel combustion properties

- Bio-diesels and ethanol are fundamentally clean and attractive fuels to be used in engines
- The use of these fuels as supplements to petroleum base fuel are compatible with current engine configuration and fuel infra-structure
- Practical issues can be adequately handled by engineering
 - Fuel quality
 - Engine calibration
 - Materials compatibility, viscosity, ...

Burning the fuel is the least of the problem !!!

Status of bio-fuel production

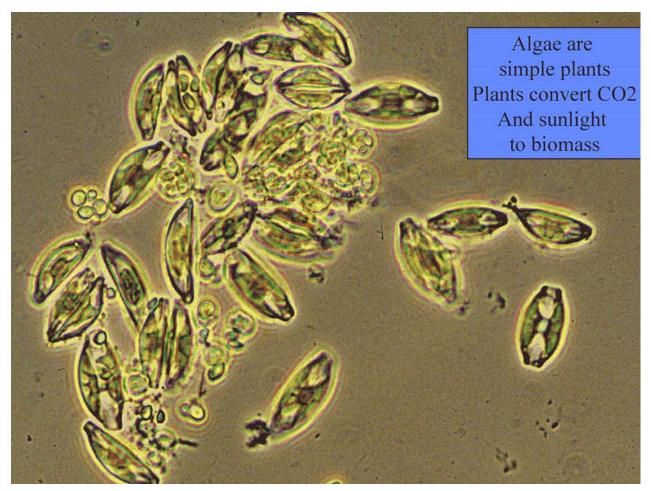

World liquid fuel production (2005)

HYDROCARBONS

RENEWABLES

Image removed due to copyright restrictions. Please see p. 2 in Budny, Daniel. "The Global Dynamics of Biofuels." Brazil Institute Special Report. Washington, DC: Woodrow Wilson International Center for Scholars, April 2007.

Liquid fuel supply projection


US bio-fuel capacity

US biofuels

	S harvested crop land (US agriculture census 2002), hectare 1.23E+08 S all distillate use (diesel+jet+power gen etc.) EIA2007; L/yr 3.34E+11 S gasoline use, EIA 2007; L/yr 5.40E+11				
	gal/acre L/hectare				demand
bio-diesel					
palm oil	5.08E+02	4,756	1.54E+11	5.85E+11	
coconut	2.30E+02	2,153	6.99E+10	2.65E+11	
rapeseed	1.02E+02	955	3.10E+10	1.17E+11	
SOY	6.00E+01	562	1.82E+10	6.91E+10	0.19
peanut	9.00E+01	843	2.73E+10	1.04E+11	0.29
sunflower	8.20E+01	768	2.49E+10	9.44E+10	0.27
jatropia (SE Asia)	2.00E+02	1,872	6.08E+10	2.30E+11	0.64
algae (?)	1.80E+03	16,850	5.47E+11	2.07E+12	5.78
ethanol					
corn	3.44E+02	3,217	1.04E+11	3.96E+11	0.71
sugar cane (Brazil)	8.00E+02	7,489	2.43E+11	9.21E+11	

Crop based bio-fuels do not have enough capacity to meet the liquid fuel demand !!!

Algae: micro-seaweeds

Courtesy of Robert Dibble. Used with permission.

Issues

- Production
 - Need high lipid content species
 - Need fast growth species
 - Growth in dense environment
- Harvest techniques
- Oil extraction

Current largest algae plant (production of algae for salmon feeding)

Hawaii

Courtesy of Robert Dibble. Used with permission.

Energy balance Example: Corn ethanol in US

Ethanol from corn

- Several studies of the overall energy budget
 - P = energy used in production
 - feedstock production/ transport + processing
 - E = Energy of the ethanol output
 - Return (%) = (E − P) / E
- Studies
 - Pimentel and Patzek (2003, 2005): negative return
 - Return = 29%
 - USDA (Shapouri et al 2002, 2004): positive return
 - Return* = **+5.6%**
 - Return* = +40% if by products (Corn gluten meal, etc.) are accounted for

* For comparison purpose, these figures were converted from the values of (E-P)/P of +5.9% and +67% in the original publication

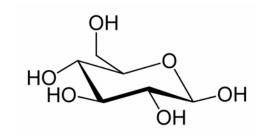
Verdict:

Substantial

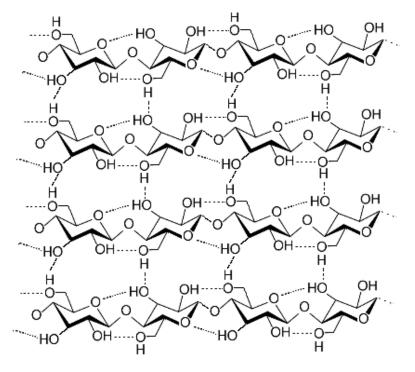
environmental

and economic

cost; return not


clear

Other bio-fuels

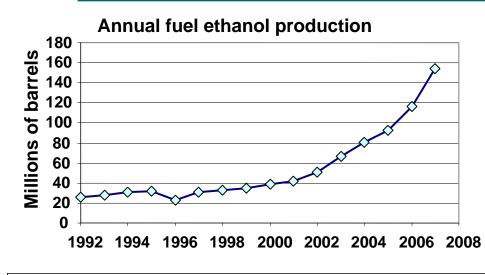

- Pimentel and Patzek also estimated energy budget for other biofuels. Returns:
 - Ethanol from switchgrass = -50%
 - Ethanol from wood biomass = -57%
 - Bio-diesel from soybean = -27%
 - Bio-diesel from sunflower = -118%
- Other more positive estimates:
 - Bio-diesel from rapeseed = +32% (EU)
 - Bio-diesel production = +324% (US National Bio-diesel Board)
- Outlook: NOT CLEAR
 - New technology needed to change the picture

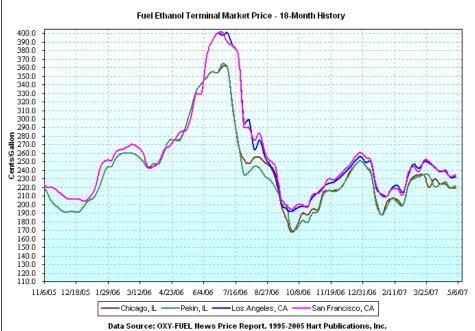
Technical difficulties of producing liquid fuel from plants

- Glucose fermentation produces significant CO2 out and energy loss
- $\Delta H_{f} \text{ per mol}$ C₆H₁₂O₆ → 2C₂H₅OH + 2CO₂ + 219.2 KJ of carbon atom -67.8 KJ -117.3 KJ - 393.5 KJ
 - Cellulose much more difficult to break down than sugar

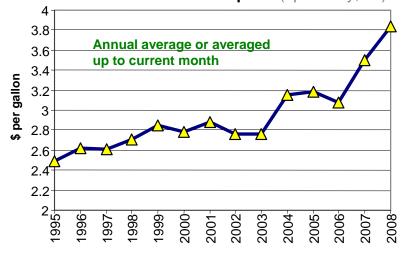
Glucose

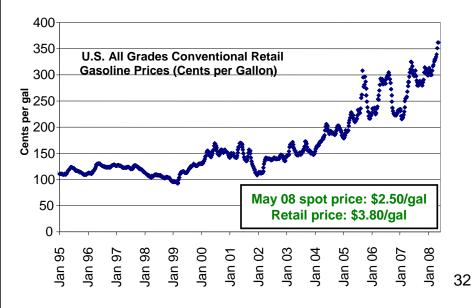
Source: Wikipedia


Cellulose

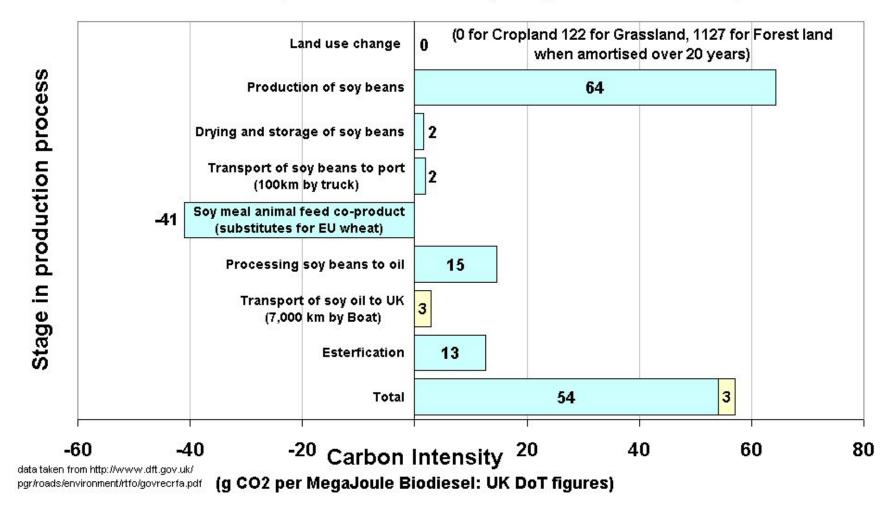

Effect of government policy on bio-fuel

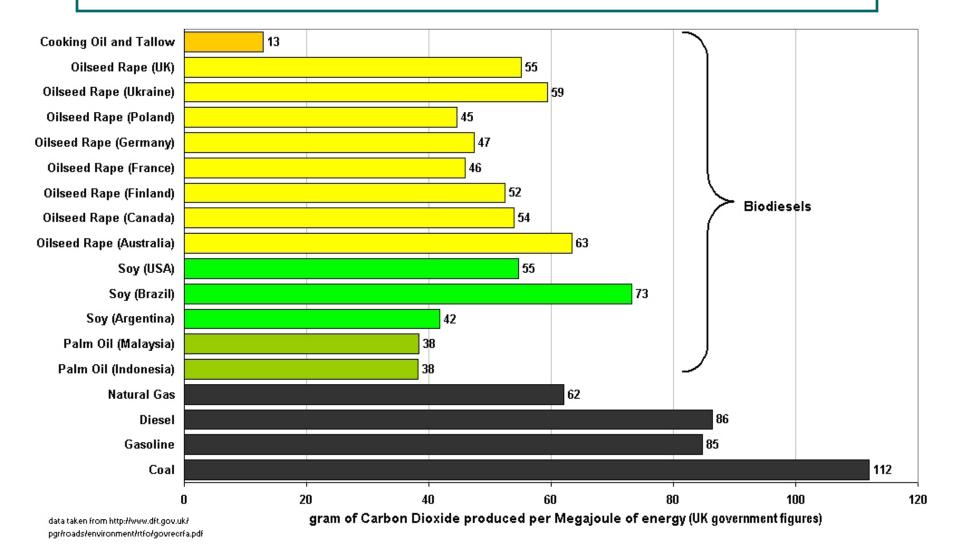
- Current US demand for ethanol is driven by government regulations and incentives
 - Ethanol flex-fuel vehicles produced because of the 74% credit towards CAFE requirement
 - (E85 vehicle equivalent mph = mpg x 1.74)
 - Gasoline oxygenate mandate, and phase out of MTBE
 - Energy bill (Aug. 05) mandated a threshold of 7.5 billion gallons (180 million barrels) production by 2012
 - Tax subsidy
 - blender's tax credit \$0.51/gallon alcohol
 - \$0.051/gallon fuel tax exemption for gasohol
 - minimum 10 vol % alcohol


Economic impact of crop-based bio-fuel


Example: Corn ethanol in US (~20% of total corn production in 2007)

Fresh whole milk retail price (up to May, 08)




Source: California Energy Commission, 2006

Carbon intensity (net mass of CO2 produced per unit fuel energy)

Carbon Intensity of Biodiesel Production (US Soy Oil Esterfied in the UK)

Carbon intensity

Source: http://en.wikipedia.org/wiki/Biodiesel

Other environmental impact

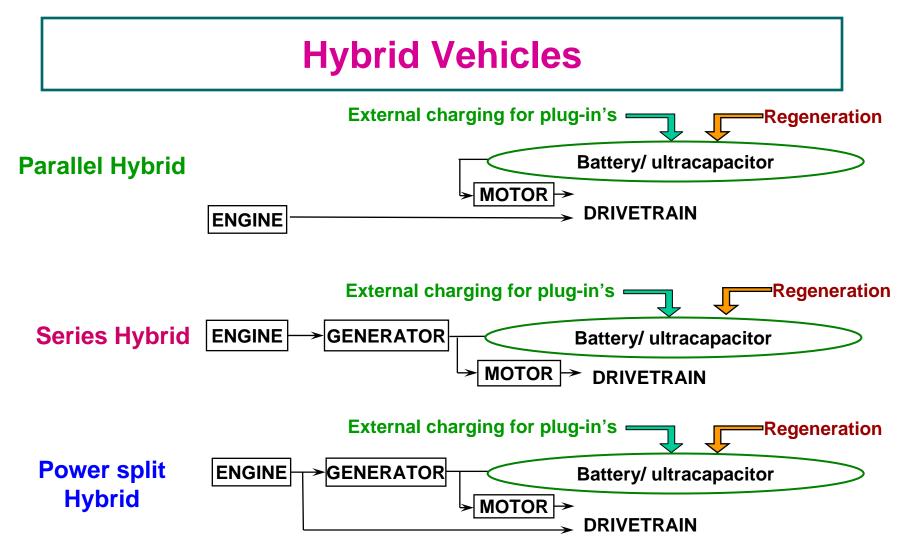
- Water resources
- Fertilizer
- Soil
- Bio-diversity
- Plant waste treatment

Closure

- Bio-diesel and alcohols are excellent fuels for transportation use
 - Good combustion characteristics
 - Compatible with current engine technology
- Sustainability
 - Bio-fuels from crops are not likely to make any significant impact on the global liquid fuel supply picture
 - Land capacity
 - Effect on food price
 - Further development on other feed stocks needed
 - Algae for bio-diesel production
 - Cellulosic alcohol

Closure (continue)

- Sustainability issues
 - Energy budget
 - Water use
 - CO₂ intensity especially with land use replacement
 - Bio-diversity
 - Other issues
 - ➢Bio-fuel plant waste treatment
 - ➢ Resources requirement


Hybrid vehicles

Configuration:

IC Engine + Generator + Battery + Electric Motor

Concept

- Eliminates external charging
- As "load leveler"
 - Improved overall efficiency
- Regeneration ability
- Plug-in hybrids: use external electricity supply

Examples: Parallel hybrid: Honda Insight Series hybrid: GM E-Flex System Power split hybrid: Toyota Prius

Hybrids and Plug-in hybrids

Hybrids (HEV)

- "Stored fuel centered"
 - Full hybrid
 - Mild hybrid /power assist

Plug-in hybrids (PHEV)

- "Stored electricity centered"
 - Blended PHEV
 - Urban capable PHEV
 - AER/ E-REV

Images removed due to copyright restrictions. Please see Fig. 5 and 7 in Tate, E. D., Michael O. Harpster, and Peter J. Savagian. "The Electrification of the Automobile: From Conventional Hybrid, to Plug-In Hybrids, to Extended-Range Electric Vehicles." *SAE International Journal of Passenger Cars - Electronic and Electrical Systems* 1 (April 2008): 2008-01-0458.

Engine/ motor sizing

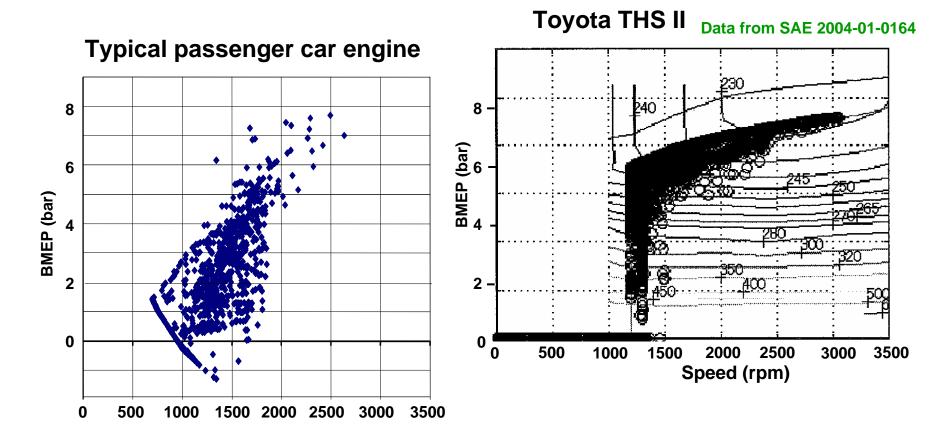
Images removed due to copyright restrictions. Please see Fig. 14 in Komatsu, Masayuki, et al. "Study on the Potential Benefits of Plug-In Hybrid Systems." *SAE International Journal of Passenger Cars - Electronic and Electrical Systems* 1 (April 2008): 2008-01-0456. and

Fig. 8 in Tate, E. D., Michael O. Harpster, and Peter J. Savagian. "The Electrification of the Automobile: From Conventional Hybrid, to Plug-In Hybrids, to Extended-Range Electric Vehicles." *SAE International Journal of Passenger Cars - Electronic and Electrical Systems* 1 (April 2008): 2008-01-0458. The optimal component sizing and power distribution strategy depend on the required performance, range, and drive cycle

The reduced load/ speed dynamic range required from the engine offers design opportunities

Image removed due to copyright restrictions. Please see Fig. 3 in Aoki, Kaoru, et al. "Development of an Integrated Motor Assist Hybrid System: Development of the 'Insight', a Personal Hybrid Coupe." SAE Journal of Engines 109 (June 2000): 2000-01-2216.

HEV TECHNOLOGY


Toyota Prius

- Engine: 1.5 L, Variable Valve Timing, Atkinson/Miller Cycle (13.5 expansion ratio), Continuously Variable Transmission
 - 57 KW at 5000 rpm
- Motor 50 KW
- Max system output 82 KW
- Battery Nickel-Metal Hydride, 288V; 21 KW
- Fuel efficiency:
 - 66 mpg (Japanese cycle)
 - 43 mpg (EPA city driving cycle)
 - 41 mpg (EPA highway driving cycle)
- Efficiency improvement (in Japanese cycle) attributed to:
 - 50% load distribution; 25% regeneration; 25% stop and go
- Cost: ~\$20K

Efficiency improvement: Toyota Hybrid System (THS)

Image removed due to copyright restrictions. Please see Fig. 2 in Inoue, Toshio, et al. "Improvement of a Highly Efficient Hybrid Vehicle and Integrating Super Low Emissions." *SAE Journal of Fuels and Lubricants* 109 (October 2000): 2000-01-2930.

Operating map in LA4 driving cycle

Cost factor

If Δ \$ is price premium for hybrid vehicle P is price of gasoline (per gallon) δ is fractional improvement in mpg

Then mileage (M) to be driven to break even is

$$M = \frac{\Delta \$ x mpg}{P x \delta}$$

(assume that interest rate is zero)

Cost Factor

Example:

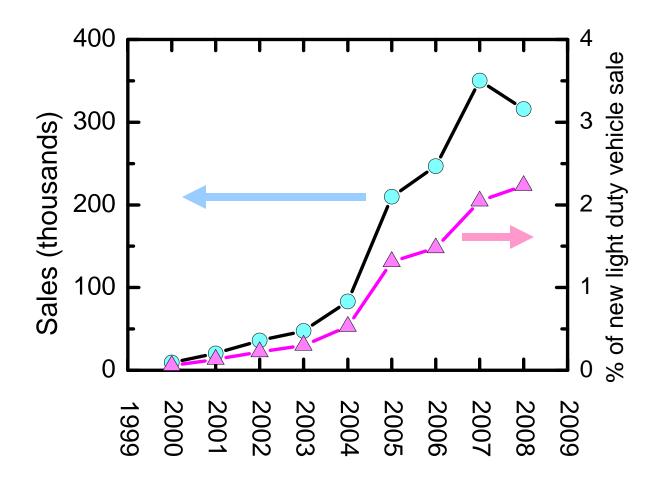
Honda Civic and Civic-Hybrid

Price premium (Δ \$, MY08 listed) = \$7155 (\$22600-15445) mpg (city and highway av.) hybrid improvement in mpg(%)

= 29 mpg (42 for hybrid)

At gasoline price of \$4.00 per gallon, mileage (M) driven to break even is

$$M = \frac{\$7155 \times 29}{\$4 \times 45\%} = 115,000 \text{ miles}$$


Barrier to Hybrid Vehicles

- Cost factor
 - difficult to justify especially for the small, already fuel efficient vehicles
- Battery replacement (not included in the previous breakeven analysis)
 - California ZEV mandate, battery packs must be warranted for 15 years or 150,000 miles : a technical challenge

Hybrid Vehicle Outlook

- Hybrid configuration will capture a fraction of the passenger market, especially when there is significant fuel price increase
- Competition
 - Customers downsize their cars
 - Small diesel vehicles
- Plug-in hybrids?
 - Weight penalty (battery + motor + engine)
 - No substantial advantage for overall CO₂ emissions
 - Limited battery life

Sales figure for hybrid vehicles

