

Massachusetts Institute of Technology Harvard Medical School Brigham and Women's Hospital VA Boston Healthcare System

2.782J/3.961J/BEH.451J/HST524J

BIOMATERIALS SURVEY

M. Spector, Ph.D.

TYPES OF PRIMARY ATOMIC BONDS

+

(+)

Metallic (electron "glue" or "cloud") -metals

+ + Ionie (attraction of positive and negative ions) -ceramics -calcium phosphates Н Н Н Н •C:C:C:C:C. Н Н Н Н

Covalent (shared- pair electrons) -polymers -biological macromolec. (*e.g.*, proteins)

BIOMATERIAL APPLICATIONS

- Nonabsorbable materials for the fabrication of permanent implants.
- Absorbable materials for the production of scaffolds for tissue engineering and regenerative medicine.

COMPOSITION OF METALS (%)

Stainless Steel	Cobalt Chromium	Titanium
Fe	Со	Ti
Cr (17-20%)	Cr (27-30)	Al (5.5-6.5)
Ni (10-17)	Mo (5-7)	V (3.5-4.5)
Mo (2-4)	Ni (2.5)	Fe,C,O (0.5)
C (0.03)	Fe, C, Mn, Si (<3.1)	
Mn, P, S, Si (<2.8)		

	I Prop. I M	Elastic Iodulus	Yield Strength	Ultimate Strength	Endurance Limit
ASTM#	Condition ((GPa)	(MPa)	(MPa)	(MPa)
Stain. steels					
F55, F56	Annealed	190	331	586	241 276
F138, F139					
	Cold forged	190	1213	1351	820
Cobalt alloys					
F75	Cast/anneal	210	448 517	655 889	207 310
	HIP*	253	841	1277	725 950
F799	Hot forged	210	896 1200	1399 1586	600 896
F90	Annealed	210	448 648		951 1220
F562	Hot forged	232	965 1000	1206	500
	Cold forged/				
	aged	232	1500	1795	689 793
Titanium allo)y				
F67	30% Cold				
	worked	110	485	760	300
F136	Forge anneal	116	896	965	620
	Forged/heat				
	treated	116	1034	1103	620 689

ORTHOPAEDIC METALS				
	ADVANTAGES	DISADVANTAGES		
Stainless Steel	Strength Ease of manuf. Availability	Potential for corrosion High mod. of elasticity		
Cobalt- Chromium	Strength Rel. wear resist.	High mod. of elasticity		
Titanium	Strength Low modulus Corrosion resistance	Low wear resistance		

WHAT ARE CERAMICS?

- Compounds of metallic and nonmetallic (*e.g.*, oxygen) elements
- Ceramic materials: Alumina (aluminum oxide) Zirconia (zirconium oxide)
- Metal oxides: Chromium oxide Titanium oxide

THE METALLIC OXIDE (CERAMIC) SURFACE OF METALS

CHARACTERISTICS OF OXIDES THAT AFFECT THEIR PERFORMANCE

- Adherence to metal substrate
 - Related to the mismatch in bonding (oxides comprise ionic and covalent bonds in contrast to metallic bonds)
- Porosity/density
- Thickness

METALS FOR TJA: PAST, PRESENT, AND FUTURE						
<u>1900-1940</u>	<u>1940-1960</u>	<u>1970</u>	<u>1980</u>	<u>1990</u>	<u>2000</u>	<u>2010</u>
Stain	less Steel —					
	Cob	alt-Chr	omium	Alloy -		
			–Titan	ium —		
					- ()	xinium —
Selection Criteria						
Inertness/Biocompatibility						
		— Lo	wer Mo	dulus—		
					Se	ratch-resist.
					LU Na	IDFICATIOUS
						m-Amergen.

OI	RTHOPAEDI	C METALS
	ADVANTAGES	DISADVANTAGES
Stainless	Strength	Potential for corrosion
Steel	Ease of manuf.	High mod. of elasticity
	Availability	
Cobalt-	Strength	High mod. of elasticity
Chromium	Rel. wear resist.	
Titanium	Strength	Poor wear resistance
	Low modulus	
	Corrosion resist.	
Oxinium	Scratch-resist.	?
	Low modulus	

EFFECT OF A SINGLE SCRATCH ON PE WEAR • Profound effect of a single scratch; wear due to the ridge of metal bordering an scratch 10-fold increase in Image removed due to copyright restrictions. PE wear when the Diagram showing scratch profile before lapping ridge bordering the (with ridges) and after lapping (no ridges). scratch exceeded 2µm in height No PE wear if the metal ridge is (This type of removed scratch is not noticeable by eye.) Dowson, et al., Wear (1987)

ADVANTAGES OF OXINIUM

Weds the best of a ceramic with the best of a metal.

- Scratch resistant: less abrasive wear of PE
- More lubricatious: lower friction may result in less adhesive wear of PE; better patella articulation
- Much lower modulus than Co-Cr alloy (similar to Ti): lower stiffness and <u>less stress shielding</u>
- <u>Non-allergenic</u>

Co-Cr ALLOY VERSUS Zr-Nb ALLOY THICKNESS OF THE OXIDE

Source: Benezra, V., M. Spector, et al. "Microstructural Investigation of the Oxide Scale on Zr-2.5 Nb and its Interface with the Alloy Substrate." In Biomedical Materials -- Drug Delivery, Implants and Tissue Engineering. Mat. Res. Soc. Symp. Proc. Vol. 550, 1999, pp. 337-342.

Source: Benezra, V., M. Spector, et al. "Microstructural Investigation of the Oxide Scale on Zr-2.5 Nb and its Interface with the Alloy Substrate." In Biomedical Materials -- Drug Delivery, Implants and Tissue Engineering. Mat. Res. Soc. Symp. Proc. Vol. 550, 1999, pp. 337-342.

ORTHOPEDIC POLYMERS

	ADVANTAGES	DISADVANTAGES
UHMWPE	Relatively high wear resistance	Subject to oxidation
PMMA	Polymerization in vivo	Low fatigue strength (for load-bearing applications)

MECHANICAL PROPERTIES		
	Tensile	Modulus of
	Strength	Elasticity
	(psi)	(10 ⁶ psi)
Stainless steel	90,000	28
Co-Cr Alloy	150,000	35
Ti (6AL-4V)	150,000	16
Bone	10–15,000	2–3
PMMA	7,000	0.2–0.5
UHMWPE	6.500	0.06-0.18

POLYETHYLENE				
SYNTHESIS	COMPACTION	COMP. MFG.		
Hoechst —	→ Westlake Poly Hi	→ Orthopedic Co.		
Resin ——	- Extruded Rod —	→ Machined		
(Powder, Flake)	Comp. Molded	Molded		
125 μm	Plate			
MW Catalyst	Fusion defects	Sterilization		

Micrometer Level

Fusion defects due to incomplete consolidation are cracks that can be propagated by fatigue (delamination) wear.

Nanometer Level

- "Tie" molecules bind PE crystallites
- Mechanical properties are related to the number of tie molecules (fracture occurs through the amorphous region comprised of tie molecules)
- Mechanical bonding between PE particles is due to entanglement of molecular chains
- Reinforcing elements (*e.g.*, fibers) added to PE are only effective if PE bonds to them

Micrometer Level

Fusion defects due to incomplete consolidation are cracks that can be propagated by fatigue (delamination) wear.

Nanometer Level

- "Tie" molecules bind PE crystallites
- Mechanical properties are related to the number of tie molecules (fracture occurs through the amorphous region comprised of tie molecules)
- Mechanical bonding between PE particles is due to entanglement of molecular chains
- Reinforcing elements (*e.g.*, fibers) added to PE are only effective if PE bonds to them

Courtesy of the Orthpaedic Research Society. Used with permission.

CROSS-LINKED PE CUPS: POTENTIAL FOR FRACTURE

 Rim loaded cross-linked cups have a <u>100,000-fold decrease in</u> their resistance to fatigue <u>fracture</u>, despite having only a 10-fold decrease in fracture toughness

• Cups failed after only 100 cycles

*S. Li, Soc. for Biomaterials, May 1, 1999

CROSS-LINKED PE CUPS: POTENTIAL FOR FRACTURE

- Will we be seeing more frequent fracture of cups?
- Will fracture of cups be design sensitive?
- In "solving" wear will we have introduced a new problem?

*S. Li, Soc. for Biomaterials, May 1, 1999

ROLE OF X-LINKED PE IN TKA Electron Beam X-Linked and Melted

• Against (C. Rimnac and AS Greenwald)

- -Highly x-linked PEs have ... <u>inferior fracture</u> properties"
- "raise concerns of gross fracture in knee components"
- "There are THR designs that utilize conventional PE with contemporary sterilization methods that have been shown to have excellent clinical longterm performance."

AAOS Bulletin, June 2002, p. 50-51

SCAFFOLD (MATRIX) MATERIALS Synthetic

- Polylactic acid and polyglycolic acid
- Polycarbonates
- Polydioxanones
- Polyphosphazenes
- Poly(anhydrides)
- Poly(ortho esters)
- Poly(propylene fumarate)
- Pluronic (polaxomers)
 - Poly(ethylene oxide) and poly(propylene oxide)

SCAFFOLD (MATRIX) MATERIALS Natural

- Collagen
 - -Gelatin and fibrillar sponge
 - -Non-cross-linked and cross-linked
- Collagen-GAG copolymer
- •Albumin
- Fibrin
- •Hyaluronic acid
- Cellulose
 - -Most abundant natural polymer
 - -Mechanism of absorbability in vivo?

SCAFFOLD (MATRIX) MATERIALS Natural (Continued)

• Chitosan

- -Derived from chitin, 2nd most abundant natural polymer
- -Mechanism of absorbability in vivo?
- Polyhydroxalkanoates
 - -Naturally occurring polyesters produced by fermentation
- •Alginate (polysaccharide extracted from seaweed)
- •Agarose
- •Polyamino acids