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Definitions


• Events may be controllable or not, and predictable 
or not. 

controllable uncontrollable 
predictable loading a part lunch 
unpredictable ??? machine failure 



Definitions


• Scheduling is the selection of times for future 
controllable events. 

• Ideally, scheduling systems should deal with all

controllable events, and not just production.

� That is, they should select times for operations,

set-up changes, preventive maintenance, etc.


� They should at least be aware of set-up changes, 
preventive maintenance, etc.when they select 
times for operations. 



Definitions


• Because of recurring random events, scheduling is 
an on-going process, and not a one-time calculation. 

• Scheduling, or shop floor control, is the bottom of the 
scheduling/planning hierarchy. It translates plans 
into events. 



Control Paradigm 
Definitions 

Control 

ActuationNoise 

System
State 

Observations 

This is the general paradigm for control theory and 
engineering. 



Control Paradigm 
Definitions 

In a factory, 

• State: distribution of inventory, repair/failure states 
of machines, etc. 

• Control: move a part to a machine and start 
operation; begin preventive maintenance, etc. 

• Noise: machine failures, change in demand, etc. 



Release and Dispatch 
Definitions 

• Release: Authorizing a job for production, or 
allowing a raw part onto the factory floor. 

• Dispatch: Moving a part into a workstation or 
machine. 

• Release is more important than dispatch. That is, 
improving release has more impact than improving 
dispatch, if both are reasonable. 



Requirements
Definitions 

Scheduling systems or methods should ... 

• deliver good factory performance. 
• compute decisions quickly, in response to changing 
conditions. 



Performance

Goals


• To minimize inventory and backlog. 
• To maximize probability that customers are satisfied.

• To maximize predictability (ie, minimize performance 
variability). 



Performance

Goals


• For MTO (Make to Order) 
� To meet delivery promises. 
� To make delivery promises that are both soon and 
reliable . 

• For MTS (Make to Stock) 
� to have FG (finished goods) available when

customers arrive; and


� to have minimal FG inventory. 



Performance Objective of Scheduling 

Goals 
Cumulative 

t 

Production 
and Demand 

earliness 

production P(t) 

demand D(t) 

surplus/backlog x(t) 

Objective is to keep 
cumulative production 
close to cumulative 
demand. 



Performance Difficulties 
Goals 

• Complex factories 
• Unpredictable demand (ie D uncertainty)

• Factory unreliability (ie P uncontrollability)




Basic

approaches


• Simple rules — heuristics 
� Dangers: 
� Too simple — may ignore important features.

� Rule proliferation. 

• Detailed calculations 
� Dangers: 
� Too complex — impossible to develop intuition.

� Rigid — had to modify — may have to lie in data. 



Basic Detailed calculations 
approaches 

• Deterministic optimization. 
� Large linear or mixed integer program. 
� Re-optimize periodically or after important event. 

• Scheduling by simulation. 



Basic Detailed calculations 
approaches Dangers 

• Nervousness or scheduling volatility (fast but 
inaccurate response): 
� The optimum may be very flat. That is, many very 
different schedule alternatives may produce similar 
performance. 

� A small change of conditions may therefore cause 
the optimal schedule to change substantially. 



Basic Detailed calculations 
approaches Dangers 
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Basic Detailed calculations 
approaches Dangers 

• Slow response: 
� Long computation time. 
� Freezing. 

• Bad data: 
� Factory data is often very poor, especially when 
workers are required to collect it manually.


� GIGO




Characteristics

Heuristics


• A heuristic is a proposed solution to a problem that 
seems reasonable but cannot be rigorously justified. 

• In reentrant systems, heuristics tend to favor older 
parts. 
� This keeps inventory low. 



Characteristics 
Heuristics 

Desirable Characteristics 

• Good heuristics deliver good performance. 
• Heuristics tend to be simple and intuitive. 

� People should be able to understand why choices 
are made, and anticipate what will happen. 

� Relevant information should be simple and easy to 
get access to. 

� Simplicity helps the development of simulations. 
• Good heuristics are insensitive to small 
perturbations or errors in data. 



Characteristics

Heuristics 

Decentralization 

• It is often desirable for people to make decisions on 
the basis of local, current information. 
� Centralized decision-making is most often

bureaucratic, slow, and inflexible.


• Most heuristics are naturally decentralized, or can be 
implemented in a decentralized fashion. 



Operator 
Machine 

Part Part 
Operation

Consumable Waste 

Token Token 

Material/token policies 
Heuristics 

Performance evaluation 

• An operation cannot take 
place unless there is a 
token available. 

• Tokens authorize 
production. 

• These policies can often be implemented either with finite

buffer space, or a finite number of tokens. Mixtures are also

possible.


• Buffer space could be shelf space, or floor space indicated with 
paint or tape. 



Material/token policies 
Heuristics 

Performance evaluation 

Delay 

better 

• Tradeoff between 
service rate and 
average cycle time. 

1.0 

Service rate 



Material/token policies 
Heuristics 

Finite buffer 

M B1 1 M B2 2 M B3 3 M B4 4 M B5 5 M6 

• Buffers tend to be close to full. 
• Sizes of buffers should be related to magnitude of 
disruptions. 

• Not practical for large systems, unless each box 
represents a set of machines. 



Material/token policies 
Heuristics 

Kanban 

Production kanban Withdrawal kanban Material 
movement movement movement 

• Performance slightly better than finite buffer. 
• Sizes of buffers should be related to magnitude of 
disruptions. 



Material/token policies 
Heuristics 

CONWIP 

• Constant Work in Progress 
• Variation on kanban in which the number of parts in 
an area is limited. 

• When the limit is reached, no new part enters until a 
part leaves. 

• Variations: 
� When there are multiple part types, limit work

hours or dollars rather than number of parts.


� Or establish individual limits for each part type. 



Material/token policies 
Heuristics 

CONWIP 

• If token buffer is not empty, attach a token to a part when M1 

starts working on it. 
• If token buffer is empty, do not allow part into M1. 
• Token and part travel together until they reach last machine. 
• When last machine completes work on a part, the part leaves 
and the token moves to the token buffer. 



Material/token policies 
Heuristics 

CONWIP 

• Infinite material buffers. 
• Infinite token buffer. 
• Limited material population at all times. 
• Population limit should be related to magnitude of 
disruptions. 



Material/token policies 
Heuristics 

CONWIP 

n1 n2 n3 n4 n5M M4 M5 M63M1 M2 

b 

• Claim: n1 + n2 + ... + n6 + b is constant.




Material/token policies 
Heuristics 

CONWIP Proof 

n1 n2 n3 n4 n5M M4 M5 M63M1 M2 

b 

• Define C = n1 + n2 + ... + n5 + b. 
• Whenever Mj does an operation, C is unchanged, 

j = 2, ..., 5. 

� ... because nj−1 goes down by 1 and nj goes up by 1, and 
nothing else changes. 

• Whenever M1 does an operation, C is unchanged. 
� ... because b goes down by 1 and n1 goes up by 1, and

nothing else changes.




Material/token policies 
Heuristics 

CONWIP Proof 
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Material/token policies 
Heuristics 

CONWIP/Kanban Hybrid 

• Finite buffers 
• Finite material population 
• Limited material population at all times. 
• Population and sizes of buffers should be related to 
magnitude of disruptions. 



Material/token policies 
Heuristics 

CONWIP/Kanban Hybrid 
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• Production rate as a 
function of CONWIP 
population. 

• In these graphs, total 
buffer space (including 
for tokens) is finite. 
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Material/token policies 
Heuristics 

CONWIP/Kanban Hybrid 
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• Maximum production 
rate occurs when 
population is half of 
total space. 



Material/token policies 
Heuristics 

CONWIP/Kanban Hybrid 
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• When total space is 
infinite, production rate 
increases only. 
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Material/token policies 
Simple Policies 

Hedging point 

Cumulative


and Demand 

earliness

surplus x(t)

production P(t)

demand D(t) = dt

Production


• State: (x, �) 

• x = surplus = difference 
between cumulative 
production and demand. 

• � = machine state. 
� = 1 means machine 
is up; � = 0 means 

t machine is down. 



Material/token policies 
Simple Policies 

Hedging point 

• Control: u 

• u = short term production rate. 
� if � = 1, 0 � u � µ; 
� if � = 0, u = 0. 



� 

Material/token policies 
Simple Policies 

Hedging point 

x 

• Objective function: g(x) 
� T 

min E g(x(t))dt 
0 

• where 
g+x, if x � 0 

g(x) = 
−g−x, if x < 0 



 Dynamics: •
 dx

 d − u = �
 dt
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Material/token policies 
Simple Policies 

Hedging point 



Material/token policies 
Simple Policies 

Hedging point 

Cumulative

Production and Demand production


t 

Solution: 
d t + Z 

• if x(t) > Z, wait; 
hedging point Z 

• if x(t) = Z, operate at 
surplus x(t) demand rate d; 

demand dt • if x(t) < Z, operate at 
maximum rate µ. 



Material/token policies 
Simple Policies 

Hedging point 

• The hedging point Z is the single parameter. 
• It represents a trade-off between costs of inventory 
and risk of disappointing customers. 

• It is a function of d, µ, r, p, g+, g−. 



Material/token policies 
Simple Policies 

Hedging point 
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Material/token policies 
Simple Policies 

Hedging point 

• Operating Machine M 
according to the hedging 
point policy is equivalent to 
operating this assembly S 

system according to a finite 
B buffer policy. 

D 

M 

FG 



Material/token policies 
Simple Policies 

Hedging point 

• D is a demand generator . 
� Whenever a demand arrives, D sends a token to


B. 
• S is a synchronization machine. 
�S is perfectly reliable and infinitely fast. 

• FG is a finite finished goods buffer. 
• B is an infinite backlog buffer. 



Material/token policies 
Simple Policies 

Basestock 

• Base Stock: the amount of material and backlog 
between each machine and the customer is limited. 

• Deviations from targets are adjusted locally. 



Material/token policies 
Simple Policies 

Basestock 

Demand 

• Infinite buffers. 
• Finite initial levels of material and token buffers. 



Material/token policies
Simple Policies 

Basestock Proof 

M1 n1 MM12 n2 M3 n3 M4 n4 M5 n5 M6 

b1 b2 b3 b4 b5 b6 

Demand 

k=6 

Claim: bj + nj + nj+1 + ... + nk−1 − bk, 1 � j � k

remains constant at all times. 



Material/token policies 
Simple Policies 

Basestock Proof 
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Material/token policies 
Simple Policies 

Basestock Proof 
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Material/token policies 
Simple Policies 

Basestock Proof 

• When a demand arrives, 
�nj stays constant, for all j, and all bj increase by 
one. 

� Therefore bj + nj + nj+1 + ... + nk−1 − bk


remains constant for all j.

• Conclusion: whenever any event occurs, 

bj + nj + nj+1 + ... + nk−1 − bk remains constant, 
for all j. 



Material/token policies 
Simple Policies 

Comparisons 

• Simulation of simple

Toyota feeder line.


• We simulated all 
possible kanban 
policies and all 
possible 
kanban/CONWIP 
hybrids. 



Material/token policies 
Simple Policies 

Comparisons 
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Material/token policies 
Simple Policies 

Comparisons 

More results of the comparison experiment: best 
parameters for service rate =.999. 
Policy 
Finite buffer 
Kanban 
Basestock 
CONWIP 
Hybrid 
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Material/token policies 
Simple Policies 

Comparisons 

More results of the comparison experiment: 
performance. 
Policy Service level Inventory 
Finite buffer 0.99916 ± .00006 15.82 ± .05 
Kanban 0.99909 ± .00005 15.62 ± .05 
Basestock 0.99918 ± .00006 14.60 ± .02 
CONWIP 0.99922 ± .00005 14.59 ± .02 
Hybrid 0.99907 ± .00007 13.93 ± .03 



Other policies 
Simple Policies 

FIFO 

• First-In, First Out. 
• Simple conceptually, but you have to keep track of 
arrival times. 

• Leaves out much important information: 
� due date, value of part, current surplus/backlog 
state, etc. 



Other policies 
Simple Policies 

EDD 

• Earliest due date. 
• Easy to implement. 
• Does not consider work remaining on the item, value 
of the item, etc.. 



Other policies 
Simple Policies 

SRPT 

• Shortest Remaining Processing Time 
• Whenever there is a choice of parts, load the one 
with least remaining work before it is finished. 

• Variations: include waiting time with the work time. 
Use expected time if it is random. 



Other policies 
Simple Policies 

Critical ratio 

• Widely used, but many variations. One version: 
Processing time remaining until completion 

� Define CR = 
Due date - Current time 

� Choose the job with the highest ratio (provided it is positive).

� If a job is late, the ratio will be negative, or the denominator

will be zero, and that job should be given highest priority.


� If there is more than one late job, schedule the late jobs in 
SRPT order. 



Other policies 
Simple Policies 

Least Slack 

• This policy considers a part’s due date. 
• Define slack = due date - remaining work time 
• When there is a choice, select the part with the least 
slack. 

• Variations involve different ways of estimating 
remaining time. 



Other policies 
Simple Policies 

Drum-Buffer-Rope 

• Due to Eli Goldratt. 
• Based on the idea that every system has a bottleneck. 
• Drum: the common production rate that the system operates 
at, which is the rate of flow of the bottleneck. 

• Buffer: DBR establishes a CONWIP policy between the 
entrance of the system and the bottleneck. The buffer is the 
CONWIP population. 

• Rope: the limit on the difference in production between 
different stages in the system. 

• But: What if bottleneck is not well-defined? 



Conclusions


• Many policies and approaches. 
• No simple statement telling which is better. 
• Policies are not all well-defined in the literature or in practice. 
• My opinion: 

� This is because policies are not derived from first principles. 
� Instead, they are tested and compared. 
� Currently, we have little intuition to guide policy development 
and choice. 
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