Forecasting

Lecturer: Prof. Duane S. Boning

1

Regression – Review & Extensions

- Single Model Coefficient: Linear Dependence
- Slope and Intercept (or Offset):
- Polynomial and Higher Order Models:
- Multiple Parameters

$$y = \beta_0 + \beta_1 x$$

 $y = \beta x$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$

$$y = \beta_0 + \beta_1 x + \beta_2 w$$

- Key point: "linear" regression can be used as long as the model is linear in the coefficients (doesn't matter the dependence in the independent variable)
- Time dependencies
 - Explicit
 - Implicit

 $y = \beta_0 + \beta_1 t$

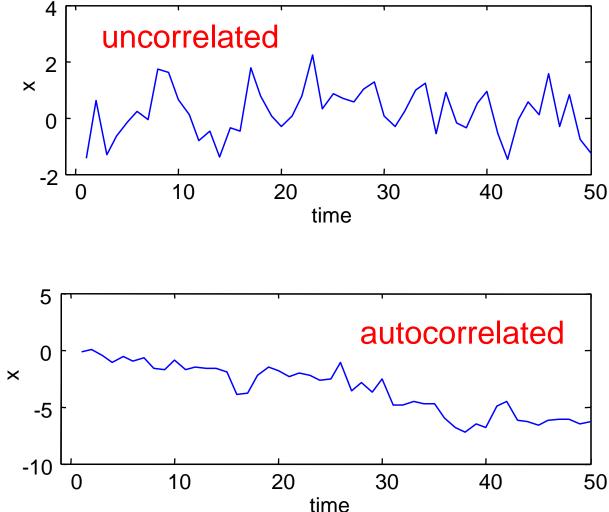
$$y_i = \alpha \cdot y_{i-1} + w_i$$

Agenda

- 1. Regression
 - Polynomial regression
 - Example (using Excel)
- 2. Time Series Data & Time Series Regression
 - Autocorrelation ACF
 - Example: white noise sequences
 - Example: autoregressive sequences
 - Example: moving average
 - ARIMA modeling and regression
- 3. Forecasting Examples

Time Series – Time as an Implicit Parameter

- Data is often collected with a *time-order*
- An underlying dynamic process (e.g. due to physics of a manufacturing process) may create × *autocorrelation* in the data



Intuition: Where Does Autocorrelation Come From?

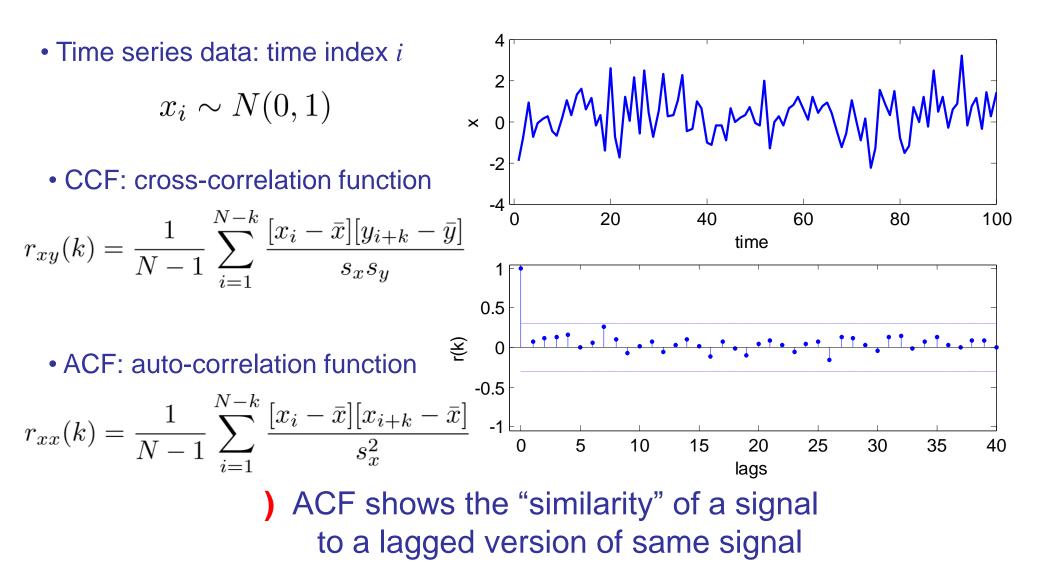
• Consider a chamber with volume *V*, and with gas flow in and gas flow out at rate *f*. We are interested in the concentration *x* at the output, in relation to a known input concentration *w*.

$$\frac{f}{w_t} \qquad V \qquad f \qquad dx_t = (w_t - x_t)\frac{f}{V}$$
$$x_t = w_t - \frac{V}{f}\frac{dx_t}{dt} = w_t - \tau\frac{dx_t}{dt}$$

Consider a step change in input of w_0 at t = 0. Then $x_t = w_0(1 - e^{-t/\tau})$ Discretizing: $x_t = x_{t-1} + (w_0 - x_{t-1})(1 - e^{-\Delta t/T})$ $x_t = aw_t + (1 - a)x_{t-1}$ where $a = 1 - e^{-\Delta t/T}$

correlation between x_t & x_{t-1} is $\rho = 1 - a = e^{-\Delta t/T}$

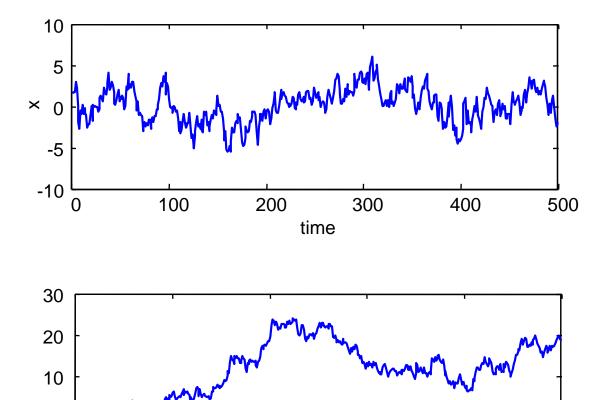
Key Tool: Autocorrelation Function (ACF)



Stationary vs. Non-Stationary

-10

Stationary series: Process has a **fixed** mean



time

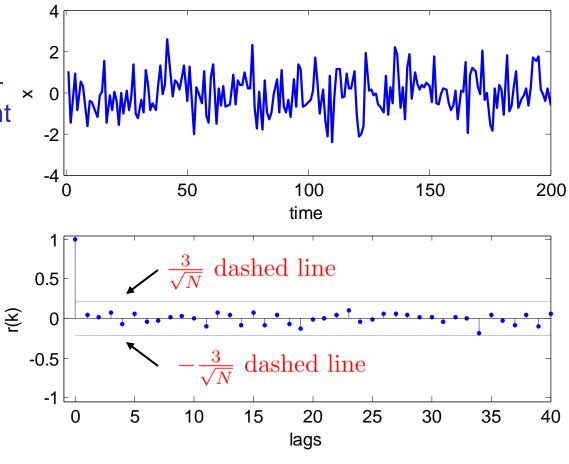
White Noise – An Uncorrelated Series

- Data drawn from IID gaussian $w_i \sim N(0, 1)$
- ACF: We also plot the 3σ limits values within these not significant
- Note that r(0) = 1 always (a signal is always equal to itself with zero lag perfectly autocorrelated at k = 0)
- Sample mean

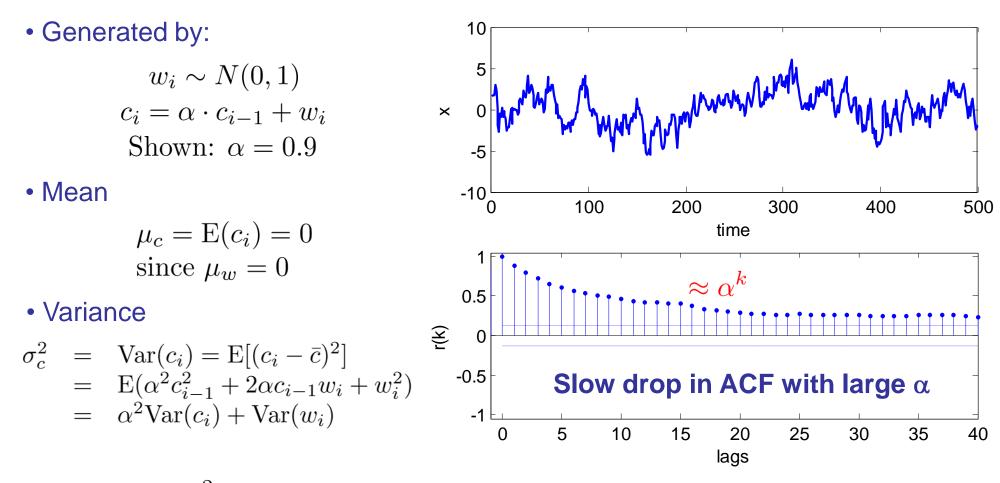
$$\bar{w} = \frac{1}{N} \sum_{i=1}^{N} w_i$$

• Sample variance

$$s_w^2 = \frac{1}{N-1} \sum_{i=1}^N (w_i - \bar{w})^2$$



Autoregressive Disturbances

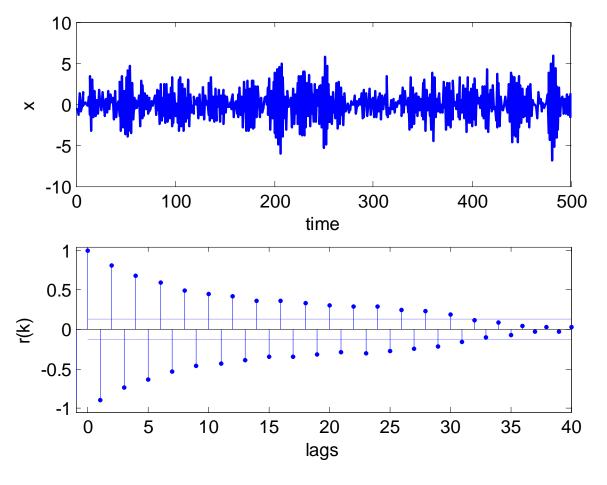


$$\Rightarrow \sigma_c^2 = \frac{\sigma_w^2}{1 - \alpha^2}$$

So AR (autoregressive) behavior *increases* variance of signal.

Another Autoregressive Series

- Generated by:
 - $w_i \sim N(0, 1)$ $c_i = \alpha \cdot c_{i-1} + w_i$ Shown: $\alpha = -0.9$
- High **negative** autocorrelation:



Slow drop in ACF with large α But now ACF alternates in sign

Random Walk Disturbances

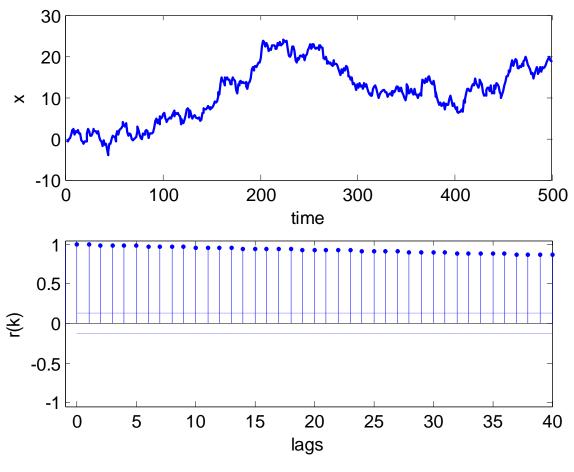
- Generated by:
 - $w_i \sim N(0, 1)$ $c_i = 1 \cdot c_{i-1} + w_i$ AR with $\alpha = 1$

Mean

 $\bar{c} \neq 0$ non-stationary

• Variance

Variance increases as sequence gets longer



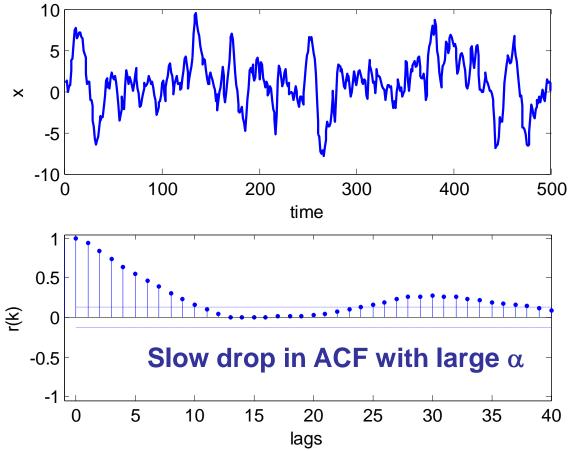
Very slow drop in ACF for $\alpha = 1$

Moving Average Sequence

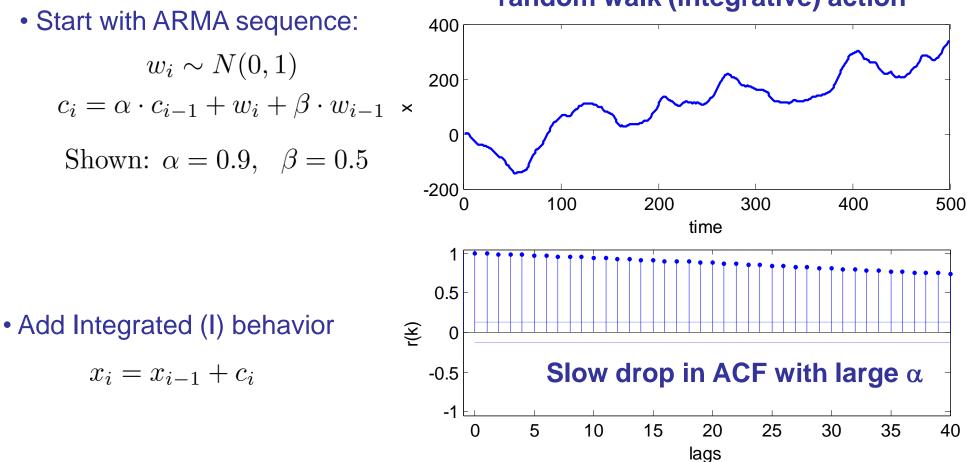
- Generated by: $w_i \sim N(0,1)$ 2 $c_i = w_i + \beta \cdot w_{i-1}$ × Shown: $\beta = 0.5$ Mean -4₀ 100 $\mu_c = \mathcal{E}(c_i) = 0$ 200 300 400 500 time since $\mu_w = 0$ Variance $\checkmark r(1) \approx \beta$ 0.5 $\sigma_c^2 = \operatorname{Var}(c_i) = \operatorname{E}[(c_i - \bar{c})^2]$ (k) 0 $= E(w_i^2 + 2\beta w_i w_{i-1} + \beta^2 w_{i-1}^2)$ -0.5 Jump in ACF at specific lag $= (1+\beta^2)\operatorname{Var}(w_i)$ -1 5 10 25 15 20 30 35 0 40 lags $\Rightarrow \sigma_c^2 = (1 + \beta^2)\sigma_w^2$
 - So MA (moving average) behavior also increases variance of signal.

ARMA Sequence

- Generated by: $w_i \sim N(0, 1)$ $c_i = \alpha \cdot c_{i-1} + w_i + \beta \cdot w_{i-1}$ Shown: $\alpha = 0.9, \quad \beta = 0.5$
- Both AR & MA behavior



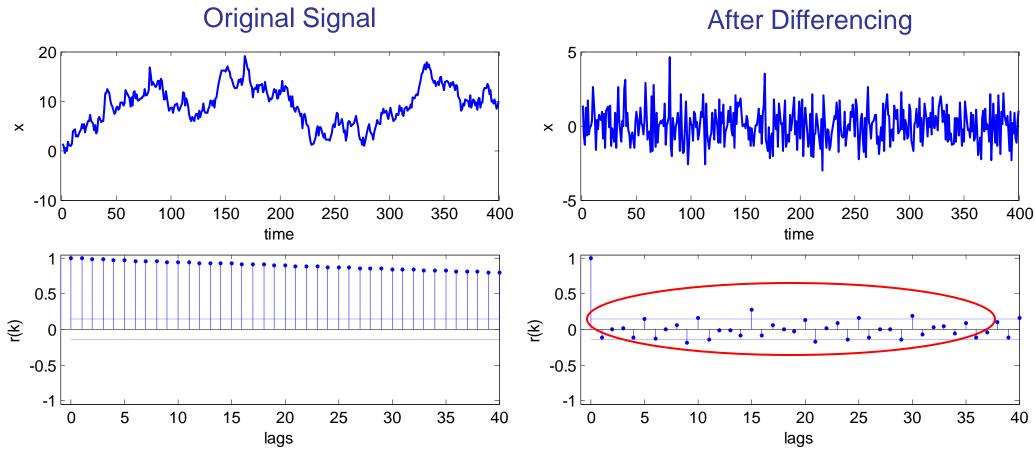
ARIMA Sequence



random walk (integrative) action

14

Periodic Signal with Autoregressive Noise



 $d_i = x_i - x_{i-1}$

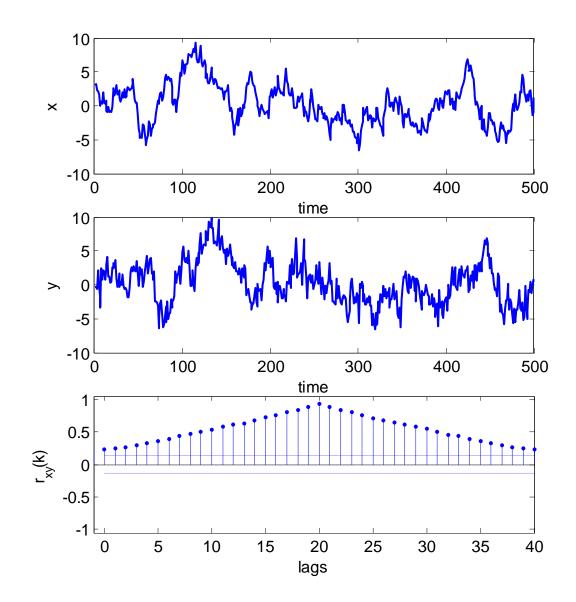
See underlying signal with period = 5

Cross-Correlation: A Leading Indicator

- Now we have two series:
 An "input" or explanatory variable x
 - An "output" variable y

$$y_i = x_{i-k} + w_i$$
$$w_i \sim N(0, 1)$$

- Shown: lag k = 20 and autoregressive x with $\alpha = 0.9$
- CCF indicates both AR and lag:



Regression & Time Series Modeling

- The ACF or CCF are helpful tools in selecting an appropriate model structure
 - Autoregressive terms?
 - $x_i = \alpha x_{i-1}$
 - Lag terms?
 - $y_i = \gamma x_{i-k}$
- One can structure data and perform regressions
 - Estimate model coefficient values, significance, and confidence intervals
 - Determine confidence intervals on *output*
 - Check residuals

Statistical Modeling Summary

- 1. Statistical Fundamentals
 - Sampling distributions
 - Point and interval estimation
 - Hypothesis testing
- 2. Regression
 - ANOVA
 - Nominal data: modeling of treatment effects (mean differences)
 - Continuous data: least square regression $y = f(\mathbf{x}, \mathbf{b})$
- 3. Time Series Data & Forecasting
 - Autoregressive, moving average, and integrative behavior
 - Auto- and Cross-correlation functions
 - Regression and time-series modeling
- $x_i = f(\mathbf{x}, \mathbf{b})$ $y_i = f(\mathbf{x}, \mathbf{b})$

2.854 / 2.853 Introduction to Manufacturing Systems Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.