Manufacturing Systems Overview

Lecturer: Stanley B. Gershwin

http://web.mit.edu/manuf-sys

http://web.mit.edu/chuanshi/www/

Background

- In 1993, the ink-jet printer market was taking off explosively, and manufacturers were competing intensively for market share.
- Manufacturers could sell all they could produce.
 Demand was much greater than production capacity.
- Hewlett Packard was designing and producing its printers in Vancouver, Washington (near Portland, Oregon).

HP Printer Case

Background

HP's needs

- Maintain quality.
- Meet increased demand and increase market share.
 - ★ Target: 300,000 printers/month.
- Meet profit and revenue targets.
- Keep employment stable.
 - ★ Capacity with existing manual assembly: 200,000 printers/month.

Printer Production

HP Printer Case

HP invested \$25,000,000 in "Eclipse," a new system for automated assembly of the print engine.

Two Eclipses were installed.

Printer Production

HP Printer Case

Design philosophy: minimal — essentially zero — buffer space.

The Problem

HP Printer Case

- Machine efficiencies¹ were estimated to be about .99.
- Operation times were estimated to be 9 seconds, and constant.
 - ★ Consequently, the total production rate was estimated to be about 370,000 units/month.
- BUT data was collected when the first two machines were installed:
 - ★ Efficiency was less than .99.
 - ★ Operation times were variable, often greater than 9 seconds.

Actual production rate would be about 125,000 units/month.

¹(to be defined)

The Problem

- HP tried to analyze the system by simulation. They consulted a vendor, but the project appeared to be too large and complex to produce useful results in time to affect the system design.
 - ★ This was because they tried to include too much detail.
- Infeasible changes: adding labor, redesigning machines.

The Solution

- Feasible change: adding a small amount of buffer space within Eclipse.
- Design tools: to be described in this course.

The Solution

- Empty pallet buffer.
- WIP work in process) space between subassembly lines and main line.
- WIP space on main line.
- Buffer sizes were large enough to hold about 30 minutes worth of material. This is a small multiple of the mean time to repair (MTTR) of the machines.

The Consequences

- Increased factory capacity to over 250,000 units/month.
- Capital cost of changes was about \$1,400,000.
- Incremental revenues of about \$280,000,000.
- Labor productivity increased by about 50%.
- Improved factory design method.
- New research results which have been incorporated in courses.
- MIT spin-off: Analytics Operations Engineering, Inc., http://www.nltx.com/.

Reasons for Success

- Early intervention.
- Rapid response by MIT researchers because much related work already done.
- HP managers' flexibility.
- The new analysis tool was fast, easy to use, and was at the right level of detail.

Message

Course Overview

- Manufacturing systems can be understood like any complex engineered system.
- Engineers must have intuition about these systems in order to design and operate them most effectively.
- Such intuition can be developed by studying the elements of the system and their interactions.
- Using intuition and appropriate design tools can have a big payoff.

Goals

Course Overview

- To explain important measures of system performance.
- To show the importance of random, potentially disruptive events in factories.
- To give some intuition about behavior of these systems.

Goals

Course Overview

- To describe and justify some current tools and methods.
- But not to describe all current common-sense approaches.

- Manufacturing System Engineering (MSE) is not as advanced as other branches of engineering.
- Practitioners are encouraged to rely on gurus, slogans, and black boxes.
- A gap exists between theoreticians and practitioners.

- The research literature is incomplete,
 - ★ ... but practitioners are often unaware of what does exist.
- Terminology, notation, basic assumptions are not standardized.
- There is typically a separation of product, process, and system design.
 - ★ They should be done simultaneously or iteratively, not sequentially.

- Confusion about objectives:
 - ★ maximize capacity?
 - ★ minimize capacity variability?
 - ★ maximize capacity utilization?
 - * minimize lead time?
 - ★ minimize lead time variability?
 - ★ maximize profit?
- Systems issues are often studied last, if at all.

- Manufacturing gets less respect than it deserves.
 - * Systems not designed with engineering methods.
 - ★ Product designers and sales staff are not informed of manufacturing costs and constraints.
- Black box thinking.
 - ★ Factories not treated as systems to be analyzed and engineered.
 - ★ Simplistic ideas often used for management and design.

Reliable systems intuition is lacking. As a consequence, there is ...

- Management by software
 - ★ Managers buy software to <u>make</u> production decisions, rather than to <u>aid</u> in making decisions.
- Management by slogan
 - * Gurus provide simple solutions which sometimes work. Sometimes.

Observation

- When a system is not well understood, rules proliferate.
- This is because rules are developed to regulate behavior.
- But the rules lead to unexpected, undesirable behavior. (Why?)
- New rules are developed to regulate the new behavior.
- Et cetera.

Example

Observation

- A factory starts with one rule: do the latest jobs first.
- Over time, more and more jobs are later and later.
- A new rule is added: treat the highest priority customers orders as though their due dates are two weeks earlier than they are.
- The low priority customers find other suppliers, but the factory is still late.
- Why?

Observation

Example

Why?

There are significant setup times from part family to part family.
 If setup times are not considered, changeovers will occur too often, and waste capacity.

- Any rules that do not consider setup times in this factory will perform poorly.
- For example, ...?

Definitions

- Manufacturing: the transformation of material into something useful and portable.
- Manufacturing System: A manufacturing system is a set of machines, transportation elements, computers, storage buffers, people, and other items that are used together for manufacturing. These items are resources.

Definitions

- Manufacturing System:
 - * Alternate terms:
 - * Factory
 - * Production system
 - * Fabrication facility
 - * Subsets of manufacturing systems, which are themselves systems, are sometimes called *cells*, work centers, or work stations.

- Frequent new product introductions.
- Product lifetimes often short.
- Process lifetimes often short.

This leads to frequent building and rebuilding of factories.

There is little time for improving the factory after it is built; it must be built right.

Consequent Needs

Basic Issues

- Tools to predict the performance of proposed factory designs.
- Tools for optimal factory design.
- Tools for optimal real-time management (control) of factories.
- Manufacturing Systems Engineering professionals who understand factories as complex systems.

Quantity, Quality, and Variability

- Design Quality the design of products that give customers what they want or would like to have (features).
- Manufacturing Quality the manufacturing of products to avoid giving customers what they don't want or would not like to have (bugs).

This course is about manufacturing, *not* product design.

Quantity, Quality, and Variability

- Quantity how much is produced and when it is produced.
- Quality how well it is produced.

In this course, we focus mostly on quantity.

General Statement: Variability is the enemy of manufacturing.

Styles for Demand Satisfaction

Basic Issues

- Make to Stock (Off the Shelf):
 - * items available when a customer arrives
 - ★ appropriate for large volumes, limited product variety, cheap raw materials

Make to Order:

- ★ production started only after order arrives
- ★ appropriate for custom products, low volumes, expensive raw materials

Conflicting Objectives

Basic Issues

Make to Stock:

- ★ large finished goods inventories needed to prevent stockouts
- * small finished goods inventories needed to keep costs low

Conflicting Objectives

Basic Issues

Make to Order:

- ★ excess production capacity (low utilization) needed to allow early, reliable delivery promises
- ★ minimal production capacity (high utilization) needed to to keep costs low

Concepts

Basic Issues

- Complexity: collections of things have properties that are non-obvious functions of the properties of the things collected.
- Non-synchronism (especially randomness) and its consequences: Factories do not run like clockwork.

Concepts

Operation

Nothing happens until everything is present.

Concepts

Waiting

Whatever does not arrive last must wait.

- *Inventory:* parts waiting.
- Under-utilization: machines waiting.
- Idle work force: operators waiting.

Concepts

Waiting

- Reductions in the availability, or ...
- Variability in the availability ...

... of any one of these items causes waiting in the rest of them and reduces performance of the system.

Flow shop

Kinds of Systems

... or Flow line, Transfer line, or Production line.

Traditionally used for high volume, low variety production.

What are the buffers for?

Assembly system

Assembly systems are *trees*, and may involve *thousands* of parts.

Bill of Materials of a large electronic product

Assembly system

Loops

Closed loop (1)

Pallets or fixtures travel in a closed loop. Routes are determined. The number of pallets in the loop is constant.

Loops

Reentrant loops (2)

System with reentrant flow and two part types

Routes are determined. The number of parts in the loop varies. Semiconductor fabrication is highly reentrant.

Loops

Rework loop (3)

Routes are random. The number of parts in the loop varies.

Job shop

- Machines not organized according to process flow.
- Often, machines grouped by department:
 - ★ mill department
 - ★ lathe department
 - * etc.
- Great variety of products.
- Different products follow different paths.
- Complex management.

Two Issues

- Efficient design of systems;
- Efficient operation of systems after they are built.

- All factory performance measures are about time.
 - * production rate: how much is made in a given time.
 - * lead time: how much time before delivery.
 - * cycle time: how much time a part spends in the factory.
 - * delivery reliability: how often a factory delivers on time.
 - * capital pay-back period: the time before the company get its investment back.

- Time appears in two forms:
 - ★ delay
 - ★ capacity utilization
- Every action has impact on both.

Delay

- An operation that takes 10 minutes adds 10 minutes to the *delay* that
 - * a workpiece experiences while undergoing that operation;
 - * every other workpiece experiences that is waiting while the first is being processed.

Capacity Utilization

- An operation that takes 10 minutes takes up 10 minutes of the available time of
 - ⋆ a machine,
 - ⋆ an operator,
 - * or other resources.
- Since there are a limited number of minutes of each resource available, there are a limited number of operations that can be done.

Production Rate

Time

- Operation Time: the time that a machine takes to do an operation.
- Production Rate: the average number of parts produced in a time unit. (Also called throughput.)

If nothing interesting ever happens (no failures, etc.),

Production rate =
$$\frac{1}{\text{operation time}}$$

... but something interesting always happens.

Capacity

- Capacity: the maximum possible production rate of a manufacturing system, for systems that are making only one part type.
 - * Short term capacity: determined by the resources available right now.
 - * Long term capacity: determined by the average resource availability.
- Capacity is harder to define for systems making more than one part type. Since it is hard to define, it is *very* hard to calculate.

- Uncertainty: Incomplete knowledge.
- Variability: Change over time.
- Randomness: A specific kind of incomplete knowledge that can be quantified and for which there is a mathematical theory.

- Factories are full of random events:
 - * machine failures
 - ★ changes in orders
 - ★ quality failures
 - ★ human variability
- The economic environment is uncertain
 - * demand variations
 - * supplier unreliability
 - * changes in costs and prices

Therefore, factories should be

designed and operated

to minimize the

creation, propagation, or amplification

of uncertainty, variability, and randomness.

- Therefore, all engineers should know probability...
 - * especially manufacturing systems engineers .

MIT OpenCourseWare http://ocw.mit.edu

2.854 / 2.853 Introduction to Manufacturing Systems Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.