LP Example

Stanley B. Gershwin*
Massachusetts Institute of Technology

Consider the factory in Figure 1 that consists of three parallel machines. It makes a single product which can be produced using any one of the machines. The possible material flows are indicated.

Assume that the cost ($\$ /$ part) of using machine M_{i} is c_{i}, and that the maximum rate that M_{i} can operate is μ_{i}. Assume that $c_{3}>c_{2}>c_{1}>0$ and let $\mu_{3}=\infty$. The total demand is D.

Problem: How should the demand be allocated among the machines to minimize cost?
Intuitive answer: We want to use the least expensive machine as much as possible, and the most expensive machine as little as possible. Therefore

If $D \leq \mu_{1}$,	$x_{1}=D, x_{2}=x_{3}=0$	cost $=c_{1} D$
If $\mu_{1}<D \leq \mu_{1}+\mu_{2}$,	$x_{1}=\mu_{1}, x_{2}=D-\mu_{1}, x_{3}=0$	cost $=c_{1} \mu_{1}+c_{2}\left(D-\mu_{1}\right)$
If $\mu_{1}+\mu_{2}<D$,	$x_{1}=\mu_{1}, x_{2}=\mu_{2}, x_{3}=D-\mu_{1}-\mu_{2}$	cost $=c_{1} \mu_{1}+c_{2} \mu_{2}+c_{3}\left(D-\mu_{1}-\mu_{2}\right)$

LP formulation:

$$
\min c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}
$$

such that

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=D \\
x_{1} \leq \mu_{1} \\
x_{2} \leq \mu_{2} \\
x_{i} \geq 0, i=1,2,3
\end{gathered}
$$

The constraint space is illustrated in Figure 2 for two different values of D. The arrows indicate the solution points.

Figure 1: Factory

Figure 2: Constraint space

LP in Standard Form: Define x_{4} and x_{5} as the slack variables associated with the upper bounds on x_{1} and x_{2}. Then

$$
\min c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}
$$

such that

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=D \\
x_{1}+x_{4}=\mu_{1} \\
x_{2}+x_{5}=\mu_{2} \\
x_{i} \geq 0, i=1, \ldots, 5
\end{gathered}
$$

In that case

$$
\begin{gathered}
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right) \\
b=\left(\begin{array}{c}
D \\
\mu_{1} \\
\mu_{2}
\end{array}\right) \\
c^{T}=\left(\begin{array}{lllll}
c_{1} & c_{2} & c_{3} & 0 & 0
\end{array}\right)
\end{gathered}
$$

Verification of solution guess:

1. $D \leq \mu_{1}$:

We have guessed that when D is small, $x_{1}=D, x_{2}=x_{3}=0$. Then, also, $x_{4}=\mu_{1}-D, x_{5}=\mu_{2}$. This is a feasible solution. It is also basic, in which the basic variables are x_{1}, x_{4}, x_{5} and

$$
\begin{aligned}
& A_{B}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad A_{N}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0 \\
1 & 0
\end{array}\right) \\
& c_{B}^{T}=\left(\begin{array}{lll}
c_{1} & 0 & 0
\end{array}\right) \quad c_{N}^{T}=\left(\begin{array}{ll}
c_{2} & c_{3}
\end{array}\right)
\end{aligned}
$$

It is easy to show that

$$
A_{B}^{-1} A_{N}=\left(\begin{array}{cc}
1 & 1 \\
-1 & -1 \\
1 & 0
\end{array}\right)
$$

This is demonstrated at the end of this note.
Therefore,
$c_{R}^{T}=c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}=\left(\begin{array}{ll}c_{2} & c_{3}\end{array}\right)-\left(\begin{array}{ccc}c_{1} & 0 & 0\end{array}\right)\left(\begin{array}{cc}1 & 1 \\ -1 & -1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}c_{2} & c_{3}\end{array}\right)-\left(\begin{array}{ll}c_{1} & c_{1}\end{array}\right)=\left(\begin{array}{cc}c_{2}-c_{1} & c_{3}-c_{1}\end{array}\right)$
and, by assumption,

$$
\begin{aligned}
& c_{2}-c_{1}>0 \\
& c_{3}-c_{1}>0
\end{aligned}
$$

Therefore, since both components of c_{R} are positive, the solution we guessed is correct.
2. $\mu_{1}<D \leq \mu_{1}+\mu_{2}$

We have guessed that $x_{1}=\mu_{1}, x_{2}=D-\mu_{1}, x_{3}=0$. Then $x_{4}=0, x_{5}=\mu_{2}-D+\mu_{1}$. The basic variables are x_{1}, x_{2}, x_{5} and

$$
\begin{aligned}
& A_{B}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \quad A_{N}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right) \\
& c_{B}^{T}=\left(\begin{array}{lll}
c_{1} & c_{2} & 0
\end{array}\right) \quad c_{N}^{T}=\left(\begin{array}{ll}
c_{3} & 0
\end{array}\right)
\end{aligned}
$$

Then

$$
A_{B}^{-1} A_{N}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1 \\
1 & -1
\end{array}\right)
$$

and

$$
c_{R}^{T}=c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}=\left(\begin{array}{cc}
-c_{2}+c_{3} & c_{1}-c_{2}+c_{3}
\end{array}\right)
$$

which is also componentwise positive.
3. $\mu_{1}+\mu_{2}<D$:

We have guessed that $x_{1}=\mu_{1}, x_{2}=\mu_{2}, x_{3}=D-\mu_{1}-\mu_{2}$. Then $x_{4}=x_{5}=0$ and x_{1}, x_{2}, x_{3} are the basic variables. Therefore,

$$
\begin{aligned}
& A_{B}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad A_{N}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right) \\
& c_{B}^{T}=\left(\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right) \quad c_{N}^{T}=\left(\begin{array}{ll}
0 & 0
\end{array}\right)
\end{aligned}
$$

Then

$$
A_{B}^{-1} A_{N}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & -1
\end{array}\right)
$$

and

$$
c_{R}^{T}=c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}=-\left(\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & -1
\end{array}\right)=\left(\begin{array}{ll}
c_{3}-c_{1} & c_{3}-c_{2}
\end{array}\right)
$$

Figure 3: Cost
which is also componentwise positive.
Note that the cost as a function of D is shown in Figure 3.
To show that, in the first case,

$$
A_{B}^{-1} A_{N}=\left(\begin{array}{cc}
1 & 1 \\
-1 & -1 \\
1 & 0
\end{array}\right)
$$

$A_{B}^{-1} A_{N}$ is a matrix of two columns. The first column satisfies

$$
\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right)
$$

and the second satisfies

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right)
$$

The equation for the first column is equivalent to

$$
\begin{gathered}
1=s_{1} \\
0=s_{1}+s_{2} \\
1=s_{3}
\end{gathered}
$$

or

$$
\left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

and the equation for the second column is

$$
\begin{gathered}
1=t_{1} \\
0=t_{1}+t_{2} \\
0=s_{3}
\end{gathered}
$$

or

$$
\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

Putting the columns together,

$$
A_{B}^{-1} A_{N}=\left(\begin{array}{cc}
1 & 1 \\
-1 & -1 \\
1 & 0
\end{array}\right)
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.854 / 2.853 Introduction to Manufacturing Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

