Optimization

Lecturer: Stanley B. Gershwin

Purpose of Optimization

Choosing the *best* of a set of alternatives.

Applications:

 investment, scheduling, system design, product design, etc., etc.

Optimization is sometimes called *mathematical programming*.

Purpose of Optimization

Typically, many designs are tested.

Purpose of Optimization

- For this to be practical, total computation time must be limited. Therefore, we must control both *computation time per iteration* and *the number of iterations*.
- Computation time per iteration includes evaluation time and the time to determine the next design to be evaluated.
- The technical literature is generally focused on limiting the number of iterations by proposing designs efficiently.
- Reducing computation time per iteration is accomplished by
 - using analytical models rather than simulations
 - using coarser approximations in early iterations and more accurate evaluation later.

Problem Statement

X is a set of possible choices. J is a scalar function defined on X. h and g are vector functions defined on X.

Problem: Find $x \in X$ that satisfies J(x) is maximized (or minimized) — the objective <u>subject to</u>

h(x) = 0 — equality constraints

 $g(x) \leq 0$ — inequality constraints

Taxonomy

- static/dynamic
- deterministic/stochastic
- X set: continuous/discrete/mixed

(Extensions: multi-objective (or multi-criterion) optimization, in which there are multiple objectives that must somehow be reconciled; games, in which there are multiple optimizers, each choosing different xs.)

 $X = R^n$. J is a scalar function defined on R^n . $h (\in R^m)$ and $g (\in R^k)$ are vector functions defined on R^n .

Problem: Find $x \in R^n$ that satisfies J(x) is maximized (or minimized) $\underline{subject \ to}$ h(x) = 0 $g(x) \leq 0$

Unconstrained

One-dimensional search

Find t such that f(t) = 0.

- This is equivalent to
 - Find t to maximize (or minimize) F(t)
 - when F(t) is differentiable, and f(t) = dF(t)/dt is continuous.
- If f(t) is differentiable, maximization or minimization depends on the sign of $d^2F(t)/dt^2$.

Unconstrained

One-dimensional search

Unconstrained

One-dimensional search

Example:

$$f(t) = 4 - t^2$$

t_0	$ t_2 $	$ t_1 $
0	1.5	3
1.5	2.25	3
1.5	1.875	2.25
1.875	2.0625	2.25
1.875	1.96875	2.0625
1.96875	2.015625	2.0625
1.96875	1.9921875	2.015625
1.9921875	2.00390625	2.015625
1.9921875	1.998046875	2.00390625
1.998046875	2.0009765625	2.00390625
1.998046875	1.99951171875	2.0009765625
1.99951171875	2.000244140625	2.0009765625
1.99951171875	1.9998779296875	2.000244140625
1.9998779296875	2.00006103515625	2.000244140625
1.9998779296875	1.99996948242188	2.00006103515625
1.99996948242188	2.00001525878906	2.00006103515625
1.99996948242188	1.99999237060547	2.00001525878906
1.99999237060547	2.00000381469727	2.00001525878906
1.99999237060547	1.99999809265137	2.00000381469727
1.99999809265137	2.0000095367432	2.00000381469727

Unconstrained

One-dimensional search

Unconstrained

One-dimensional search

Example:

$$f(t) = 4 - t^2$$

t_0
3
2.16666666666667
2.00641025641026
2.00001024002621
2.0000000002621
2

Unconstrained

One-dimensional search

Unconstrained

One-dimensional search

Example:

$$f(t) = 4 - t^2$$

t_0
0
3
1.3333333333333333333
1.84615384615385
2.03225806451613
1.99872040946897
1.99998976002621
2.000000032768
1.9999999999999999
2

Unconstrained

Multi-dimensional search

Optimum often found by *steepest ascent* or *hill-climbing* methods.

(Steepest descent for minimization.)

Unconstrained

Gradient search

To maximize J(x), where x is a vector (and J is a scalar function that has *nice* properties):

- 0. Set n = 0. Guess x_0 .
- 1. Evaluate $\frac{\partial J}{\partial x}(x_n)$.
- 2. Let t be a scalar. Define

$$J_n(t) = J \left\{ x_n + t \frac{\partial J}{\partial x}(x_n)
ight\}$$

Find (by one-dimensional search) t_n^* , the value of t that maximizes $J_n(t)$.

3. Set $x_{n+1} = x_n + t_n^* \frac{\partial J}{\partial x}(x_n)$. 4. Set $n \leftarrow n+1$. Go to Step 1.

Unconstrained

Gradient search

Constrained

Equality constrained: solution is on the constraint surface.

Problems are much easier when constraint is linear, ie, when the surface is a plane.

- In that case, replace $\partial J/\partial x$ by its projection onto the constraint plane.
- But first: find an initial <u>feasible</u> guess.

Constrained

Inequality constrained: solution is required to be on *one side of* the plane.

Inequality constraints that are satisfied with equality are called *effective* or *active* constraints.

If we knew which constraints would be effective, the problem would reduce to an equality-constrained optimization.

Nonlinear Programming

Optimization problems with continuous variables, objective, and constraints are called *nonlinear programming* problems, especially when at least one of J, h, g are not linear.

Multiple Optima

Danger: a search might find a local, rather than the global, optimum.

Continuous Karush-Kuhn-Tucker Conditions Variables and Objective

J is a scalar function defined on R^n . $h (\in R^m)$ and $g (\in R^k)$ are vector functions defined on R^n .

```
Problem: Find x \in R^n that satisfies

J(x) is minimized

\frac{subject to}{h(x) = 0}

g(x) \leq 0
```

See the "KKT Examples" notes.

Continuous Karush-Kuhn-Tucker Conditions Variables and Objective Vector notation

- Let x^* be a local minimum.
- Assume all gradient vectors $\partial h_i / \partial x$, $\partial g_j / \partial x$, (where g_j is effective) are linearly independent (the *constraint qualification*).
- Then there exist vectors λ and μ of appropriate dimension $(\mu \ge 0 \text{ component-wise})$ such that at $x = x^*$,

$$rac{\partial J}{\partial x} + \lambda^T rac{\partial h}{\partial x} + \mu^T rac{\partial g}{\partial x} = 0$$

 $\mu^T g = 0$

Continuous Karush-Kuhn-Tucker Conditions Variables and Objective Vector notation

This transforms the optimization problem into a problem of simultaneously satisfying a set of equations and inequalities with additional variables (λ and μ):

 $egin{aligned} h(x) &= 0 \ g(x) &\leq 0 \ \mu &\geq 0 \ \ & eta &\equiv 0 \ \end{aligned}$

$$\mu^T g = 0$$

Continuous Karush-Kuhn-Tucker Conditions Variables and Objective Subscript notation

There exist vectors $\lambda \in R^m$ and $\mu \in R^k$ $(\mu_j \ge 0)$ such that at $x = x^*$,

$$\frac{\partial J}{\partial x_i} + \sum_{q=1}^m \lambda_q \frac{\partial h_q}{\partial x_i} + \sum_{j=1}^k \mu_j \frac{\partial g_j}{\partial x_i} = 0, \text{ for all } i = 1, ..., n,$$

$$\sum_{j=1} \mu_j g_j = 0$$

Note: The last constraint implies that

$$egin{aligned} g_j(x^*) < 0 &
ightarrow \mu_j = 0 \ & \mu_j > 0 &
ightarrow g_j(x^*) = 0. \end{aligned}$$

Numerical methods

Problem: In most cases, the KKT conditions are impossible to solve analytically. Therefore *numerical methods* are needed.

No general method is guaranteed to always work because "nonlinear" is too broad a category.

- Specialized methods: it is sometime possible to develop a solution technique that works very well for specific problems (eg, *J* quadratic, *h*, *g* linear).
- *Feasible directions:* Take steps in a feasible direction that will reduce the cost.

***** Issue: hard to get the feasible direction when constraints are not linear.

- *Gradient Projection:* project gradient onto the plane tangent to the constraint set. Move in that direction a short distance and then move back to the constraint surface.
 - ★ Issue: how short a distance? And how do you get back to the constraint surface.

Numerical methods

- Penalty Methods:
 - 1. Transform problem into an unconstrained problem such as

 $\min \bar{J}(x) = J(x) + KF(h(x), g(x))$ where F(h(x), g(x)) is positive if $h(x) \neq 0$ or any component of g(x) is positive.

- 2. Solve the problem with small positive K and then increase K. The solution for each K is a starting guess for the problem with the next K.
- \star Issues: Intermediate solutions are usually not feasible; and problem gets hard to solve as K increases.

Numerical methods

Software: Caveat Emptor!!

- There is much software available for optimization. However, use it with care!! There are always problems that can defeat any given method. If you use such software, don't assume that the answer is correct.
 - * Look at it carefully. Make sure it is intuitively reasonable.
 - ★ Do a sensitivity analysis. Vary parameters by a little bit and make sure the solution changes by a little bit. If not, *find out* why!

- *Definition:* A special case of nonlinear programming in which the objective and the constraints are all linear.
- Many practical applications.
- Efficient solution techniques are available that exploit the linearity.
- Software exists for very large problems.

Two machines are available 24 hours per day. They are both required to make each of two part types. No time is lost for changeover. The times (in hours) required are:

	Machine	
Part	1	2
1	1	2
2	3	4

What is the maximum number of Type 1's we can make in 1000 hours given that the parts are produced in a ratio of 2:1?

Example

Formulation

Let U_1 be the number of Type 1's produced and let U_2 be the number of Type 2's. Then the number of hours required of Machine 1 is

 $U_1 + 3U_2$

and the number of hours required of Machine 2 is

 $2U_1 + 4U_2$

and both of these quantities must be less than 1000. Also,

$$U_1 = 2U_2.$$

Example

Formulation

Or,

 $egin{array}{l} \max U_1 \ {
m subject to} \ U_1 + 3U_2 \,\leq\, 1000 \ 2U_1 + 4U_2 \,\leq\, 1000 \ U_1 = \, 2U_2 \ U_1 \geq 0; \quad U_2 \geq 0 \end{array}$

Example

Formulation

General formulation

Let $x \in R^n, A \in R^{m \times n}, b \in R^m, c \in R^n$.

$$\min_x \sum_{j=1}^n c_j x_j$$

subject to

$$\sum_{j=1}^n a_{ij} x_j = b_i, i = 1, \dots, m$$

$$x_j \geq 0, j=1,\ldots,n$$

General formulation

 $\min_{x} c^T x$

subject to

Or,

$$Ax = b$$

$$x \ge 0$$

Here, \geq is interpreted component-wise. This is the *standard* or *canonical form* of the LP.

General formulation

All LPs can be expressed in this form. The example can be written $\min(-1)U_1$

subject to

$$egin{aligned} &U_1+3U_2+U_3=1000\ &2U_1+4U_2+U_4=1000\ &U_1-2U_2=0\ &U_1\geq 0, U_2\geq 0, U_3\geq 0, U_4\geq 0 \end{aligned}$$

in which U_3 and U_4 are *slack variables*. Here, they represent the idle times of Machine 1 and Machine 2.

General formulation

Slack variables

In general, for every constraint of the form

$$\sum_{j=1}^n a_{ij} x_j \leq b_i$$

define a new variable x_k and replace this constraint with

$$\sum_{j=1}^n a_{ij} x_j + x_k = b_i
onumber \ x_k \geq 0$$

General formulation

Slack variables

The LP can be transformed into one with 10 variables, (at least) 7 equality constraints, and no inequalities (except for $x_i \ge 0$).

General formulation

This set is called a *polyhedron* or a *simplex*.

General formulation

Definitions

If x satisfies the constraints, it is a *feasible solution* .

If x is feasible and it minimizes $c^T x$, it is an *optimal* feasible solution.

Geometry

Special Cases

- Problem could be *infeasible* no feasible set no solution.
- Feasible set could be unbounded.
 - * Minimum of objective could be unbounded $(-\infty)$ — infinite solution.
- Effective constraints could be non-independent adds complexity to the solution technique.
- c vector could be orthogonal to the boundary of the feasible region infinite number of solutions.

Non-unique solution

Assume that there are more variables than equality constraints (that n > m) and that matrix A has rank m.

Let A_B be a matrix which consists of m columns of A. It is square $(m \times m)$. Choose columns such that A_B is invertible.

Then A can be written

$$A = (A_B, A_N)$$

in which A_B is the *basic part* of A. The *non-basic part*, A_N , is the rest of A.

Correspondingly,
$$m{x} = igg(egin{array}{c} m{x_B} \ m{x_N} igg).$$

Basic Solutions

Then $Ax = A_B x_B + A_N x_N = b$, or $x_B = A_B^{-1}(b - A_N x_N)$. If $x_B = A_B^{-1}b \ge 0$ then $x = \begin{pmatrix} A_B^{-1}b \\ 0 \end{pmatrix}$ is feasible and x is a basic feasible solution .

• Geometrically: basic feasible solutions are *corners* of the constraint set. Each corner corresponds to a different A_B .

- If there is a feasible solution, there is a basic feasible solution.
- If there is an optimal feasible solution, there is an optimal basic feasible solution.

The Simplex Method

- Since there is always a solution at a corner (when the problem is feasible and there is a bounded solution), search for solutions only on corners.
- At each corner, determine which adjacent corner improves the objective function the most. Move there. Repeat until no further improvement is possible.
- Moving to an adjacent corner is equivalent to interchanging one of the columns of A_B with one of the columns of A_N .

The Simplex Method

Reduced Cost

Choose a feasible basis. The LP problem can be written $\min c_B^T x_B + c_N^T x_N$ subject to

$$A_B x_B + A_N x_N = b$$

$$x_B \geq 0, x_N \geq 0$$

We can solve the equation for x_B and get

$$x_B = A_B^{-1}(b - A_N x_N)$$

The Simplex Method

Reduced Cost

If we eliminate x_B , the problem is

$$\min\left(c_N^T-c_B^TA_B^{-1}A_N
ight)x_N$$

subject to

$$egin{aligned} A_B^{-1}A_Nx_N&\leq A_B^{-1}b\ &x_N&\geq 0 \end{aligned}$$

This is an LP (although not in standard form). For $x_N = 0$ to be a *feasible solution*, we must have

 $A_B^{-1}b \geq 0$

The Simplex Method

Reduced Cost

Define the *reduced cost* $c_R^T = c_N^T - c_B^T A_B^{-1} A_N$. If all components of c_R are non-negative, $x_N = 0$ is *optimal*. *Very* simplified explanation of the simplex method:

- Move to an adjacent corner by taking one variable out of the basis and replacing it by one not currently in the basis.
- Add to the basis the column corresponding to the most negative element of c_R .
- Determine which element of the basis would decrease the cost most if it replaced by the new column.
- Stop when no elements of c_R are negative.

The Simplex Method

Reduced Cost

Note: if some elements of c_R are 0 and the rest are positive, there are many solutions.

Sensitivity Analysis

Suppose A, b, or c change by a little bit to A', b', and c'. Then the optimal solution may change. Cases:

- The basic/non-basic partition remains optimal. That is, the reduced cost vector based on the old partition remains all non-negative. The solution changes by a little bit.
- Some elements of the reduced cost go to 0. In that case, there are many solutions.

Sensitivity Analysis

• Some elements of the reduced cost vector (according to the current partition) become negative. In that case, the basis must change and the solution moves to a new corner. This could mean there is a large change in the solution.

Shadow price

If the optimal value of the LP is $J = c^T x^*$, the shadow price of constraint j is $\frac{\partial J}{\partial b_j}$ You should be willing to pay $\frac{\partial J}{\partial b_j} \delta b_j$ to increase the right hand side b_j of constraint j by δb_j .

- Let b_i^k be the flow introduced at node i destined for node j.
- Let x_{ij}^k be the flow on link (i, j) destined for node k. $x_{ij}^k = 0$ if there is no direct link from i to j.
- Let c_{ij}^k be the cost per unit of flow on link (i, j) for flow destined for node k. $c_{ij}^k = \infty$ if there is no direct link from i to j.

Network Problems

Conservation of flow

Flow into a node = flow out of the node.

$$\sum_{j
eq i} x_{ji}^k + b_i^k = \sum_{j
eq i} x_{ij}^k$$
 for $i
eq k$

Network Problems

Network LP

$$\min\sum_{i,j,k} c^k_{ij} x^k_{ij}$$

$$\sum_{j
eq i} x_{ji}^k + b_i^k = \sum_{j
eq i} x_{ij}^k$$
 for all $j,k;$ for all $i
eq k$

$$x_{ij}^k \geq 0$$
 for all i,j,k

Dynamic Programming

• Optimization over time.

- Decisions made now can have costs or benefits that appear only later, or might restrict later options.
- Deterministic or stochastic.
- *Examples:* investment, scheduling, aerospace vehicle trajectories.
- *Elements:* state, control, objective, dynamics, constraints.

Dynamic Programming

Discrete time, Deterministic

Special Class of NLPs

 $egin{aligned} extsf{Objective:} & J(x(0)) = \ & & & \sum_{u(i), u(i), i=0}^{T-1} L(x(i), u(i)) + F(x(T)) \ & & & 0 \leq i \leq T-1 \end{aligned}$

such that

Dynamics:x(i+1) = f(x(i), u(i), i);x(0) specifiedConstraints:h(x(i), u(i)) = 0; $g(x(i), u(i)) \leq 0.$

Dynamic Continuous time, Deterministic Programming

$$\begin{array}{ll} \textit{Objective:} & J(x(0)) = \\ & \min_{u(t), \quad} \int_0^T g(x(t), u(t)) dt + F(x(T)) \\ & 0 {\leq} t {\leq} T \end{array}$$

such that

Dynamics: $\frac{dx(t)}{dt} = f(x(t), u(t), t);$ x(0) specifiedConstraints:h(x(t), u(t)) = 0; $g(x(t), u(t)) \leq 0.$

MORE OPTIMIZATION

- integer programming/combinatorial optimization
- stochastic dynamic programming

2.854 / 2.853 Introduction to Manufacturing Systems Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.