Optimization

Lecturer: Stanley B. Gershwin

Purpose of Optimization

Choosing the best of a set of alternatives.

Applications:

- investment, scheduling, system design, product design, etc., etc.

Optimization is sometimes called mathematical programming .

Purpose of Obtimization

Typically, many designs are tested.

Purpose of Optimization

Issues

- For this to be practical, total computation time must be limited. Therefore, we must control both computation time per iteration and the number of iterations.
- Computation time per iteration includes evaluation time and the time to determine the next design to be evaluated.
- The technical literature is generally focused on limiting the number of iterations by proposing designs efficiently.
- Reducing computation time per iteration is accomplished by
\star using analytical models rather than simulations
\star using coarser approximations in early iterations and more accurate evaluation later.

Problem Statement

\boldsymbol{X} is a set of possible choices. \boldsymbol{J} is a scalar function defined on $\boldsymbol{X} . \boldsymbol{h}$ and \boldsymbol{g} are vector functions defined on \boldsymbol{X}.

Problem: Find $\boldsymbol{x} \in \boldsymbol{X}$ that satisfies
$J(x)$ is maximized (or minimized) - the objective subject to
$h(x)=0-$ equality constraints
$g(x) \leq 0$ - inequality constraints

Taxonomy

- static/dynamic
- deterministic/stochastic
- \boldsymbol{X} set: continuous/discrete/mixed
(Extensions: multi-objective (or multi-criterion) optimization, in which there are multiple objectives that must somehow be reconciled; games, in which there are multiple optimizers, each choosing different x s.)

Continuous
 Variables and
 Objective

$\boldsymbol{X}=\boldsymbol{R}^{n} . \boldsymbol{J}$ is a scalar function defined on $\boldsymbol{R}^{\boldsymbol{n}} . \boldsymbol{h}\left(\in \boldsymbol{R}^{m}\right)$ and $g\left(\in R^{k}\right)$ are vector functions defined on \boldsymbol{R}^{n}.

Problem: Find $x \in \boldsymbol{R}^{n}$ that satisfies
$J(x)$ is maximized (or minimized)
subject to

$$
\begin{aligned}
& h(x)=0 \\
& g(x) \leq 0
\end{aligned}
$$

Continuous Variables and Objective

Unconstrained

One-dimensional search

Find t such that $f(t)=0$.

- This is equivalent to

Find t to maximize (or minimize) $\boldsymbol{F}(\boldsymbol{t})$
when $F(t)$ is differentiable, and $f(t)=\boldsymbol{d F}(t) / d t$ is continuous.

- If $f(t)$ is differentiable, maximization or minimization depends on the sign of $\boldsymbol{d}^{2} \boldsymbol{F}(\boldsymbol{t}) / \boldsymbol{d} \boldsymbol{t}^{2}$.

Continuous Variables and Objective

Unconstrained

One-dimensional search

Assume $f(t)$ is decreasing.

- Binary search: Guess t_{0} and t_{1} such that $f\left(t_{0}\right)>0$ and $f\left(t_{1}\right)<0$. Let $t_{2}=\left(t_{0}+t_{1}\right) / 2$.
* If $f\left(\boldsymbol{t}_{2}\right)<0$, then repeat with $t_{0}^{\prime}=t_{0}$ and $t_{1}^{\prime}=t_{2}$.
* If $f\left(t_{2}\right)>0$, then repeat with $t_{0}^{\prime}=t_{2}$ and $t_{1}^{\prime}=t_{1}$.

Continuous Variables and Objective

Unconstrained

One-dimensional search

Example:
 $f(t)=4-t^{2}$

$\boldsymbol{t}_{\mathbf{0}}$	$\boldsymbol{t}_{\mathbf{2}}$	$\boldsymbol{t}_{\mathbf{1}}$
0	1.5	3
1.5	2.25	3
1.5	1.875	2.25
1.875	2.0625	2.25
1.875	1.96875	2.0625
1.96875	2.015625	2.0625
1.96875	1.9921875	2.015625
1.9921875	2.00390625	2.015625
1.9921875	1.998046875	2.00390625
1.998046875	2.0009765625	2.00390625
1.998046875	1.99951171875	2.0009765625
1.99951171875	2.000244140625	2.0009765625
1.99951171875	1.9998779296875	2.000244140625
1.9998779296875	2.00006103515625	2.000244140625
1.9998779296875	1.99996948242188	2.00006103515625
1.99996948242188	2.00001525878906	2.00006103515625
1.99996948242188	1.99999237060547	2.00001525878906
1.99999237060547	2.00000381469727	2.00001525878906
1.99999237060547	1.99999809265137	2.00000381469727
1.999999809265137	2.00000095367432	2.00000381469727

Continuous Variables and Objective

Unconstrained

One-dimensional search

- Newton search, exact tangent:
\star Guess t_{0}. Calculate $d f\left(t_{0}\right) / d t$.
\star Choose t_{1} so that $f\left(t_{0}\right)+\left(t_{1}-t_{0}\right) \frac{d f\left(t_{0}\right)}{d t}=0$.
\star Repeat with $t_{0}^{\prime}=t_{1}$ until $\left|f\left(t_{0}^{\prime}\right)\right|$ is small enough.

Continuous Variables and Objective

Unconstrained

One-dimensional search

Example:
$f(t)=4-t^{2}$

t_{0}
3
2.16666666666667
2.00641025641026
2.00001024002621
2.00000000002621
2

Continuous Variables and Objective

Unconstrained

One-dimensional search

- Newton search, approximate tangent:

\star Choose t_{2} so that $f\left(t_{0}\right)+\left(t_{2}-t_{0}\right) s=0$.
\star Repeat with $t_{0}^{\prime}=t_{1}$ and $t_{1}^{\prime}=t_{2}$ until $\left|f\left(t_{0}^{\prime}\right)\right|$ is small enough.

Continuous Variables and Objective

Unconstrained

One-dimensional search

Example:
$f(t)=4-t^{2}$

$\boldsymbol{t}_{\mathbf{0}}$
0
3
1.33333333333333
1.84615384615385
2.03225806451613
1.99872040946897
1.99998976002621
2.0000000032768
1.99999999999999
2

Continuous Variables and Objective

Unconstrained

Multi-dimensional search

Optimum often found by steepest ascent or hill-climbing methods.
(Steepest descent for minimization.)

Continuous Variables and Objective

Unconstrained

Gradient search

To maximize $\boldsymbol{J}(\boldsymbol{x})$, where \boldsymbol{x} is a vector (and \boldsymbol{J} is a scalar function that has nice properties):
0 . Set $\boldsymbol{n}=0$. Guess x_{0}.

1. Evaluate $\frac{\partial J}{\partial x}\left(x_{n}\right)$.
2. Let t be a scalar. Define

$$
J_{n}(t)=J\left\{x_{n}+t \frac{\partial J}{\partial x}\left(x_{n}\right)\right\}
$$

Find (by one-dimensional search) t_{n}^{\star}, the value of t that maximizes $J_{n}(t)$.
3. Set $x_{n+1}=x_{n}+t_{n}^{\star} \frac{\partial J}{\partial x}\left(x_{n}\right)$.
4. Set $n \leftarrow n+1$. Go to Step 1 .

Continuous Variables and Objective

Unconstrained

Gradient search

Continuous Variables and Objective

Constrained

Equality constrained: solution is on the constraint surface.

Problems are much easier when constraint is linear, ie, when the surface is a plane.

- In that case, replace $\partial J / \partial x$ by its projection onto the constraint plane.
- But first: find an initial feasible guess.

Continuous Variables and Objective

Inequality constrained: solution is required to be on one side of the plane.

Inequality constraints that are satisfied with equality are called effective or active constraints.

If we knew which constraints would be effective, the problem would reduce to an equality-constrained optimization.

Continuous

Nonlinear Programming

Optimization problems with continuous variables, objective, and constraints are called nonlinear programming problems, especially when at least one of J, h, \boldsymbol{g} are not linear.

Continuous
 Variables and Objective

Multiple Optima

Danger: a search might find a local, rather than the global, optimum.

Continuous Karush-Kuhn-Tucker Conditions Variables and Objective

\boldsymbol{J} is a scalar function defined on $\boldsymbol{R}^{n} . \boldsymbol{h}\left(\in \boldsymbol{R}^{m}\right)$ and $\boldsymbol{g}\left(\in \boldsymbol{R}^{\boldsymbol{k}}\right)$ are vector functions defined on \boldsymbol{R}^{n}.

Problem: Find $x \in R^{n}$ that satisfies
$J(x)$ is minimized
subject to

$$
\begin{aligned}
& h(x)=0 \\
& g(x) \leq 0
\end{aligned}
$$

See the "KKT Examples" notes.

Continuous Variables and Objective

Karush-Kuhn-Tucker Conditions

Vector notation

- Let \boldsymbol{x}^{*} be a local minimum.
- Assume all gradient vectors $\partial h_{i} / \partial x, \partial g_{j} / \partial x$, (where g_{j} is effective) are linearly independent (the constraint qualification).
- Then there exist vectors $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ of appropriate dimension ($\mu \geq 0$ component-wise) such that at $x=x^{*}$,

$$
\begin{aligned}
\frac{\partial J}{\partial x}+\lambda^{T} \frac{\partial h}{\partial x}+\mu^{T} \frac{\partial g}{\partial x} & =0 \\
\mu^{T} g & =0
\end{aligned}
$$

Continuous
 Variables and Objective

Karush-Kuhn-Tucker Conditions

Vector notation

This transforms the optimization problem into a problem of simultaneously satisfying a set of equations and inequalities with additional variables ($\boldsymbol{\lambda}$ and $\mu)$:

$$
\begin{aligned}
h(x) & =0 \\
g(x) & \leq 0 \\
\mu & \geq 0 \\
\frac{\partial J}{\partial x}+\lambda^{T} \frac{\partial h}{\partial x}+\mu^{T} \frac{\partial g}{\partial x} & =0 \\
\mu^{T} g & =0
\end{aligned}
$$

Continuous
 Variables and Objective

Karush-Kuhn-Tucker Conditions

Subscript notation

There exist vectors $\lambda \in R^{m}$ and $\mu \in R^{k}\left(\mu_{j} \geq 0\right)$ such that at $x=x^{*}$,

$$
\begin{aligned}
\frac{\partial J}{\partial x_{i}}+\sum_{q=1}^{m} \lambda_{q} \frac{\partial h_{q}}{\partial x_{i}}+\sum_{j=1}^{k} \mu_{j} \frac{\partial g_{j}}{\partial x_{i}} & =0, \quad \text { for all } i=1, \ldots, n \\
\sum_{j=1}^{k} \mu_{j} g_{j} & =0
\end{aligned}
$$

Note: The last constraint implies that

$$
\begin{aligned}
g_{j}\left(x^{*}\right)<0 & \rightarrow \mu_{j}=0 \\
\mu_{j}>0 & \rightarrow g_{j}\left(x^{*}\right)=0
\end{aligned}
$$

Continuous

Numerical methods

Problem: In most cases, the KKT conditions are impossible to solve analytically. Therefore numerical methods are needed.
No general method is guaranteed to always work because "nonlinear" is too broad a category.

- Specialized methods: it is sometime possible to develop a solution technique that works very well for specific problems (eg, J quadratic, $\boldsymbol{h}, \boldsymbol{g}$ linear).
- Feasible directions: Take steps in a feasible direction that will reduce the cost.
* Issue: hard to get the feasible direction when constraints are not linear.
- Gradient Projection: project gradient onto the plane tangent to the constraint set. Move in that direction a short distance and then move back to the constraint surface.
* Issue: how short a distance? And how do you get back to the constraint surface.

Continuous

Numerical methods

- Penalty Methods:

1. Transform problem into an unconstrained problem such as
$\min \bar{J}(x)=J(x)+\boldsymbol{K F}(h(x), g(x))$
where $\boldsymbol{F}(\boldsymbol{h}(\boldsymbol{x}), \boldsymbol{g}(\boldsymbol{x})$) is positive if $\boldsymbol{h}(\boldsymbol{x}) \neq 0$ or any component of $\boldsymbol{g}(\boldsymbol{x})$ is positive.
2. Solve the problem with small positive \boldsymbol{K} and then increase \boldsymbol{K}. The solution for each \boldsymbol{K} is a starting guess for the problem with the next \boldsymbol{K}.

* Issues: Intermediate solutions are usually not feasible; and problem gets hard to solve as \boldsymbol{K} increases.

Continuous Variables and Objective

Numerical methods

Software: Caveat Emptor!!

- There is much software available for optimization. However, use it with care!! There are always problems that can defeat any given method. If you use such software, don't assume that the answer is correct.
* Look at it carefully. Make sure it is intuitively reasonable.
^ Do a sensitivity analysis. Vary parameters by a little bit and make sure the solution changes by a little bit. If not, find out why!

Linear Programming

- Definition: A special case of nonlinear programming in which the objective and the constraints are all linear.
- Many practical applications.
- Efficient solution techniques are available that exploit the linearity.
- Software exists for very large problems.

Linear Programming

Example

Two machines are available 24 hours per day. They are both required to make each of two part types. No time is lost for changeover. The times (in hours) required are:

Part	Machine	
	1	2
1	1	2
2	3	4

What is the maximum number of Type 1's we can make in 1000 hours given that the parts are produced in a ratio of 2:1?

Linear Programming

Example

Formulation

Let \boldsymbol{U}_{1} be the number of Type 1's produced and let \boldsymbol{U}_{2} be the number of Type 2's. Then the number of hours required of Machine 1 is

$$
U_{1}+3 U_{2}
$$

and the number of hours required of Machine 2 is

$$
2 U_{1}+4 U_{2}
$$

and both of these quantities must be less than 1000. Also,

$$
U_{1}=2 U_{2}
$$

Linear Programming

Example

Formulation

Or,

$$
\max U_{1}
$$

subject to

$$
\begin{aligned}
U_{1}+3 U_{2} & \leq 1000 \\
2 U_{1}+4 U_{2} & \leq 1000 \\
U_{1} & =2 U_{2} \\
U_{1} \geq 0 ; & U_{2} \geq 0
\end{aligned}
$$

Linear Programming

Example

Formulation

Linear Programming

Let $x \in R^{n}, A \in R^{m \times n}, b \in R^{m}, c \in R^{n}$.

$$
\min _{x} \sum_{j=1}^{n} c_{j} x_{j}
$$

subject to

$$
\begin{gathered}
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, i=1, \ldots, m \\
x_{j} \geq 0, j=1, \ldots, n
\end{gathered}
$$

Linear Programming

Or,

$$
\min _{x} c^{T} x
$$

subject to

$$
\begin{gathered}
A x=b \\
x \geq 0
\end{gathered}
$$

Here, \geq is interpreted component-wise.
This is the standard or canonical form of the LP.

Linear Programming

General formulation

All LPs can be expressed in this form. The example can be written

$$
\min (-1) U_{1}
$$

subject to

$$
\begin{gathered}
U_{1}+3 U_{2}+U_{3}=1000 \\
2 U_{1}+4 U_{2}+U_{4}=1000 \\
U_{1}-2 U_{2}=0 \\
U_{1} \geq 0, U_{2} \geq 0, U_{3} \geq 0, U_{4} \geq 0
\end{gathered}
$$

in which \boldsymbol{U}_{3} and \boldsymbol{U}_{4} are slack variables. Here, they represent the idle times of Machine 1 and Machine 2.

Linear Programming

General formulation

Slack variables

In general, for every constraint of the form

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}
$$

define a new variable \boldsymbol{x}_{k} and replace this constraint with

$$
\begin{gathered}
\sum_{j=1}^{n} a_{i j} x_{j}+x_{k}=b_{i} \\
x_{k} \geq 0
\end{gathered}
$$

Linear Programming

General formulation

Slack variables

For this constraint set,
there are 3 variables, no equality constraints, and (at least) 7 inequality constraints (not counting $x_{i} \geq 0$).

The LP can be transformed into one with 10 variables, (at least) 7 equality constraints, and no inequalities (except for $x_{i} \geq 0$).

Linear Programming

General formulation

Simplex

This set is called a polyhedron or a simplex .

Linear Programming

General formulation

Definitions

If x satisfies the constraints, it is a feasible solution.

If \boldsymbol{x} is feasible and it minimizes $\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}$, it is an optimal feasible solution .

Linear
 Proarammina

Geometry

Linear
 Programming

Special Cases

- Problem could be infeasible - no feasible set - no solution.
- Feasible set could be unbounded.
\star Minimum of objective could be unbounded ($-\infty$) - infinite solution.
- Effective constraints could be non-independent adds complexity to the solution technique.
- c vector could be orthogonal to the boundary of the feasible region - infinite number of solutions.

Linear Programming

Linear Programming

Basic Solutions

Assume that there are more variables than equality constraints (that $n>m$) and that matrix A has rank m.

Let $\boldsymbol{A}_{\boldsymbol{B}}$ be a matrix which consists of \boldsymbol{m} columns of \boldsymbol{A}. It is square ($m \times m$). Choose columns such that A_{B} is invertible.

Then \boldsymbol{A} can be written

$$
A=\left(A_{B}, A_{N}\right)
$$

in which $\boldsymbol{A}_{\boldsymbol{B}}$ is the basic part of \boldsymbol{A}. The non-basic part, $\boldsymbol{A}_{\boldsymbol{N}}$, is the rest of \boldsymbol{A}.
Correspondingly, $x=\binom{x_{B}}{x_{N}}$.

Linear
 Programming

Basic Solutions

Then $\boldsymbol{A x}=\boldsymbol{A}_{B} \boldsymbol{x}_{B}+\boldsymbol{A}_{\boldsymbol{N}} \boldsymbol{x}_{\boldsymbol{N}}=\boldsymbol{b}$, or $x_{B}=A_{B}^{-1}\left(b-A_{N} x_{N}\right)$.
If $x_{B}=A_{B}^{-1} b \geq 0$ then $x=\binom{A_{B}^{-1} b}{0}$ is feasible and \boldsymbol{x} is a basic feasible solution .

- Geometrically: basic feasible solutions are corners of the constraint set. Each corner corresponds to a different $\boldsymbol{A}_{\boldsymbol{B}}$.

Linear Programming

- If there is a feasible solution, there is a basic feasible solution.
- If there is an optimal feasible solution, there is an optimal basic feasible solution.

Linear Programming

The Simplex Method

- Since there is always a solution at a corner (when the problem is feasible and there is a bounded solution), search for solutions only on corners.
- At each corner, determine which adjacent corner improves the objective function the most. Move there. Repeat until no further improvement is possible.
- Moving to an adjacent corner is equivalent to interchanging one of the columns of \boldsymbol{A}_{B} with one of the columns of $\boldsymbol{A}_{\boldsymbol{N}}$.

Linear Programming

The Simplex Method

Reduced Cost

Choose a feasible basis. The LP problem can be written

$$
\min c_{B}^{T} x_{B}+c_{N}^{T} x_{N}
$$

subject to

$$
\begin{gathered}
A_{B} x_{B}+A_{N} x_{N}=b \\
x_{B} \geq 0, x_{N} \geq 0
\end{gathered}
$$

We can solve the equation for $\boldsymbol{x}_{\boldsymbol{B}}$ and get

$$
x_{B}=A_{B}^{-1}\left(b-A_{N} x_{N}\right)
$$

Linear Programming

The Simplex Method

Reduced Cost

If we eliminate $\boldsymbol{x}_{\boldsymbol{B}}$, the problem is

$$
\min \left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N}
$$

subject to

$$
\begin{aligned}
A_{B}^{-1} A_{N} x_{N} & \leq A_{B}^{-1} b \\
x_{N} & \geq 0
\end{aligned}
$$

This is an LP (although not in standard form). For $\boldsymbol{x}_{\boldsymbol{N}}=\mathbf{0}$ to be a feasible solution, we must have

$$
A_{B}^{-1} b \geq 0
$$

Linear Programming

The Simplex Method

Reduced Cost

Define the reduced cost $c_{R}^{T}=c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}$. If all components of $\boldsymbol{c}_{\boldsymbol{R}}$ are non-negative, $\boldsymbol{x}_{\boldsymbol{N}}=\mathbf{0}$ is optimal. Very simplified explanation of the simplex method:

- Move to an adjacent corner by taking one variable out of the basis and replacing it by one not currently in the basis.
- Add to the basis the column corresponding to the most negative element of $\boldsymbol{c}_{\boldsymbol{R}}$.
- Determine which element of the basis would decrease the cost most if it replaced by the new column.
- Stop when no elements of $\boldsymbol{c}_{\boldsymbol{R}}$ are negative.

Linear Programming

The Simplex Method

Reduced Cost

Note: if some elements of $c_{\boldsymbol{R}}$ are 0 and the rest are positive, there are many solutions.

Linear Programming

 Sensitivity AnalysisSuppose $\boldsymbol{A}, \boldsymbol{b}$, or \boldsymbol{c} change by a little bit to $\boldsymbol{A}^{\prime}, \boldsymbol{b}^{\prime}$, and c^{\prime}. Then the optimal solution may change. Cases:
-The basic/non-basic partition remains optimal. That is, the reduced cost vector based on the old partition remains all non-negative. The solution changes by a little bit.

- Some elements of the reduced cost go to 0 . In that case, there are many solutions.

Linear Programming

- Some elements of the reduced cost vector (according to the current partition) become negative. In that case, the basis must change and the solution moves to a new corner. This could mean there is a large change in the solution.

Linear Programming

If the optimal value of the LP is $J=\boldsymbol{c}^{T} \boldsymbol{x}^{*}$, the shadow price of constraint j is

$$
\frac{\partial J}{\partial b_{j}}
$$

You should be willing to pay $\frac{\partial J}{\partial b_{j}} \delta b_{j}$ to increase the right hand side b_{j} of constraint j by δb_{j}.

Linear
 Programming

Network Problems

- Let b_{i}^{k} be the flow introduced at node i destined for node j.
- Let $x_{i j}^{k}$ be the flow on link (i, j) destined for node k. $x_{i j}^{k}=0$ if there is no direct link from i to j.
- Let $c_{i j}^{k}$ be the cost per unit of flow on link (i, j) for flow destined for node $\boldsymbol{k} . \boldsymbol{c}_{i j}^{k}=\infty$ if there is no direct link from i to j.

Linear Programming

Network Problems

Conservation of flow

Flow into a node = flow out of the node.

$$
\sum_{j \neq i} x_{j i}^{k}+b_{i}^{k}=\sum_{j \neq i} x_{i j}^{k} \text { for } i \neq k
$$

Linear Programming

Network Problems

Network LP

$$
\begin{gathered}
\min \sum_{i, j, k} c_{i j}^{k} x_{i j}^{k} \\
\sum_{j \neq i} x_{j i}^{k}+b_{i}^{k}=\sum_{j \neq i} x_{i j}^{k} \text { for all } j, k ; \text { for all } i \neq k \\
x_{i j}^{k} \geq 0 \text { for all } i, j, k
\end{gathered}
$$

Dynamic Programming

- Optimization over time.
* Decisions made now can have costs or benefits that appear only later, or might restrict later options.
- Deterministic or stochastic.
- Examples: investment, scheduling, aerospace vehicle trajectories.
- Elements: state, control, objective, dynamics, constraints.

Dynamic Programming

Discrete time, Deterministic

Special Class of NLPs

Objective:

$$
\begin{aligned}
& J(x(0))= \\
& \quad \min _{\substack{u(i), 0 \leq i \leq T-1}} \sum_{i=0}^{T-1} L(x(i), u(i))+F(x(T))
\end{aligned}
$$

such that

Dynamics: $\quad x(i+1)=f(x(i), u(i), i) ; \quad x(0)$ specified
Constraints: $\quad h(x(i), u(i))=0 ; \quad g(x(i), u(i)) \leq 0$.

Continuous time, Deterministic

Proarammina

Objective: $\quad J(x(0))=$

$$
\min _{\substack{u(t), 0 \leq t \leq T}} \int_{0}^{T} g(x(t), u(t)) d t+F(x(T))
$$

such that

Dynamics: $\quad \frac{d x(t)}{d t}=f(x(t), u(t), t) ; \quad x(0)$ specified
Constraints: $\quad h(x(t), u(t))=0 ; \quad g(x(t), u(t)) \leq 0$.

MORE OPTIMIZATION

- integer programming/combinatorial optimization
- stochastic dynamic programming

MIT OpenCourseWare
http://ocw.mit.edu

2.854 / 2.853 Introduction to Manufacturing Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

